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i
Abstract

This thesis investigates the problem of classifying textures from their im-
aged appearance without imposing any constraints on, or requiring any a

priori knowledge of, the viewing or illumination conditions under which the
images were obtained. Classification algorithms based on the statistical dis-
tribution of texton primitives are developed to categorise single, uncalibrated
images into a set of pre-learnt material classes.

The thesis starts by introducing a filter bank based approach to the prob-
lem of texture classification. We design low dimensional, rotation and scale
invariant filter sets which are nevertheless capable of extracting rich features
at multiple orientations and scales. Textures are modelled by the frequency
distribution of exemplar filter response features. Characterising a texture by
multiple models allows the classification of single images without requiring
any knowledge of the imaging conditions. Using this framework, it is demon-
strated that the new filter sets achieve superior performance as compared
to their traditional counterparts when benchmarked on real world databases
conatining many classes with significant imaging variations.

There are two major approaches to building texture classifiers based on
filter responses. One approach, motivated by Psychophysics, is to first de-
termine the texton primitives of a material, next model the texture by their
frequency distribution and finally classify novel images by nearest neigh-
bour matching. An alternative is offered by the more statistical, Bayesian
paradigm which recommends learning the joint probability distribution of fil-
ter responses followed by MAP classification. We show that both approaches
are essentially the same and that they can actually be made equivalent under
suitable choices of PDF representation and similarity measure.

The issue of whether filter banks are necessary for material classification
is addressed next. A novel texture representation is developed based on the
joint probability distribution of pixel intensities in compact neighbourhoods.
Using this representation within the standard classification framework leads
to two astonishing results: (a) very small neighbourhoods can yield supe-
rior performance as compared to multi-scale, multi-orientation filter banks
with large support and (b) the performance of filter banks is always inferior
to the new representation with equivalent neighbourhood size. Theoretical
arguments are presented as to why these two results might hold.

Finally, the related problem of determining the illuminant’s direction
from textured images is explored. A theory for estimating the illuminant’s
azimuthal angle from images of Lambertian, rough surfaces with spatially
varying albedo is formulated. In certain cases, the theory is able to accom-
modate the effects of non-Lambertian factors such as shadows, specularities,
inter-reflections, etc. This is evidenced by the good results achieved on nu-
merous real world images which deviate strongly from the ideal assumptions.
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Chapter 1

Introduction

A perusal of the texture analysis literature quickly reveals that most books

and theses begin with one of two standard ways of introducing the concept

of visual texture. The first is to cull many definitions of texture from dictio-

naries and other sources before concluding that none of them are satisfactory

or amenable to precise mathematical modelling. The second is to exemplify

the concept with a variety of images but then leave the reader to draw his

own definition. We take a slightly different approach for the purposes of this

thesis. Instead of attempting a universally applicable definition ourselves,

we start by looking at some of the problems that motivate interest in visual

texture analysis from a computational or algorithmic point of view.

One such important problem crops up when an automated system has to

inspect a woman’s mammogram and analyse the breast tissue to predict her

risk of developing breast cancer (see figure 1.1a). A somewhat different, but

closely related, problem is to first determine the region of the mammogram

occupied by the breast tissue and segment it from the pectoral muscle and

the background. A very different type of problem arises during the process

of digital image restoration where damaged, missing or unwanted bits of an

1



2 CHAPTER 1. INTRODUCTION

(a) (b) (c) (d)

Figure 1.1: Some of the computational problems which motivate the study
of visual texture: (a) Where is the breast tissue in this mammogram as
opposed to the pectoral muscle and the background? Does the patient have
a high or low risk of developing breast cancer in the future? (b) Removing
an unwanted person from a scene, (c) Compressing an image of a fingerprint
and (d) Determining the 3D shape of a person from her clothing.

image have to be seamlessly replaced by their backgrounds. For example,

in figure 1.1b one might like to remove the person blocking the view and

replace her by the textured scenery. Another important problem is the com-

pression of fingerprint images (figure 1.1c) so that the FBI can store its very

large database in an efficient and practical manner. The determination of a

person’s 3D shape from the clothing that she’s wearing presents yet another

challenge (figure 1.1d).

Each of these problems can be tackled successfully by exploiting the infor-

mation conveyed by the textural content in the images. Keeping this in mind,

Computer Vision research into texture has been divided into the canonical

areas of classification, segmentation, synthesis, compression and shape from

texture. It should be noted that the types of textures under consideration

can range from the purely stochastic to the completely structured and every-

thing in between. Furthermore, the term texture can have slightly different

connotations in each of the areas depending on the objective. Therefore, to

get a feel of visual texture and the different ways in which it is used and
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defined we now briefly touch upon the five canonical areas. In addition, the

psychophysics of texture perception is also discussed. We start with texture

classification which is the primary concern of this thesis.

1.1 Texture classification

The canonical texture classification task is to design an algorithm for cate-

gorising previously unseen images as belonging to one of a set of known ma-

terials of which training examples have been provided. Particular instances

of the problem arise depending on how much training data is available, what

properties it has and how it’s related to the novel images intended for clas-

sification. More recently, classification has also come to refer to the simulta-

neous localisation and categorisation of the textures of interest in an image

Figure 1.2: Using texture features for content based image retrieval: In the
top row are some sample training images, both positive and negative, used
to learn the zebra texture. The subsequent rows show the top 15 images
retrieved from a subset of the COREL dataset which match the zebra model.
Results from [Schmid, 2001].
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(detecting the presence and location of the zebras in figure 1.2 for example).

Texture classification has applications in many areas. Within Computer

Vision itself, it could be used in the problem domains of object recognition

and content based image retrieval. For example, the performance of existing

shape based object detection systems could be enhanced by providing them

with a textural description of the scene. Similarly, as figure 1.2 illustrates,

images in large databases could be automatically annotated with a list of

textures present in them for archiving and retrieval purposes [Lazebnik et al.,

2003b,Manjunath and Ma, 1996,Schmid, 2001,Xu et al., 2000]. An extension

of this idea is to present texture classification as a tool to art historians for

determining the different fabrics being worn by people in paintings and art

works [Savarese and Criminsi, 2004].

Moving on a bit further, texture classification lends itself to applications

in Medical Image Analysis. It has been used to screen women for early

signs of breast cancer by classifying parenchymal density and detecting mi-

crocalcifications [James et al., 2001, Miller and Astley, 1992, Petrick et al.,

1996, Petroudi et al., 2003]. It has also been used to diagnose pulmonary

diseases [Sutton and Hall, 1972] as well as leukaemia [Harms et al., 1986].

Even fields such as Remote Sensing have relied on texture classification to

automate processing [Brady, 2003,Haralick et al., 1973,Paget, 1999,Schistad

and Jain, 1992, Solberg and Jain, 1997, Rellier et al., 2004]. As figure 1.3

shows, terrain types appear as statistically textured regions in remotely

sensed images and can be classified as such [Lorette et al., 2000,Ruiz et al.,

2004, Weszka et al., 1976]. This is very important for monitoring land use

patterns and seeing how they evolve over time. For example, texture classifi-

cation could be used to monitor the deforestation of tropical rainforests from

SAR images [Kuntz et al., 1999, Miranda et al., 1998, Podest and Saatchi,
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Figure 1.3: Applications in Remote Sensing: Texture classification of a detail
image of an urban area. Results from [Ruiz et al., 2004].

2002, Simard et al., 2000]. It can also be used to study global warming by

monitoring glaciers and ice formation [Barber and LeDrew, 1991,Deng and

Clausi, 2003]. Another important application is to be able to automatically

detect oil slicks and other types of pollution in the sea so as to aid in their

clean up [Benelli and Garzelli, 1999].

New applications of texture classification are also being found in the areas

of automated inspection, defect detection and quality control [Chetverikov

and Hanbury, 2002,Cuenca and Camara, 2003,Newman and Jain, 1995,Song

et al., 1992]. Typical examples include the detection of defects in images of

textiles [Bodnarova et al., 2000,Mamic and Bennamoun, 2000,Ozdemir et al.,

1998], wood [Conners et al., 1990] and leather and assessing the quality of

carpets [Siew et al., 1988], machined surfaces, steel [Wiltschi et al., 2000] and

automotive finishes [Jain et al., 1990]. Figure 1.4 shows how texture classifi-

cation can be used to monitor rusting on steel girders. Such applications are
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Grade A rusting Grade B rusting Grade C rusting

Figure 1.4: Applications in automated inspection: Texture classification can
be used to assess the degree of rusting of steel girders. Image courtesy of [Un-
salan and Ercil, 1999].

critical to the manufacturing industry due to the high cost associated with

human inspection. Successful automation of such tasks can therefore have a

significant impact on the industry.

Thus, texture classification finds uses in many diverse areas and the goal

of this thesis is to develop algorithms which can be successfully applied to

problems in them.

1.2 Texture segmentation

The goal of texture segmentation is to partition a given image into disjoint

regions of coherent texture [Derin and Elliot, 1987,Galun et al., 2003, Jain

and Farrokhnia, 1991,Krishnamachari and Chellappa, 1997,Lee et al., 1992,

Malik et al., 2001,Paragios and Deriche, 2002,Sandberg et al., 2002,Tu and

Zhu, 2002,Weldon and Higgins, 1996,Xie and Brady, 1996, Zhu and Yuille,

1996]. The task can either be supervised, in which case a priori information

about the texture classes one expects to see in the image is available and

can be made use of, or unsupervised so that pixels and regions have to be
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grouped together by some measure of perceptual similarity. Texture can

also be combined with other cues, such as contour information, in order to

segment generic images. Figure 1.5 shows some illustrative examples.

(a) (b) (c)

Figure 1.5: Segmentation examples: (a) [Ren and Malik, 2003], (b) [Galun
et al., 2003] and (c) [Tu and Zhu, 2002].

As can be seen, segmentation in itself is not always a well defined task

since an image might have many “correct” segmentations. Nevertheless,

segmentation can be a powerful tool leading on to classification and recogni-

tion. For instance, [Mori et al., 2004] show how segmentation can be used as

a pre-processing stage to recognise limbs and thereby detect human beings

and recover their body pose. Similarly, many of the texture classification

applications listed in the previous section first rely on segmentation meth-

ods to demarcate regions of interest before classifying them. As an example,

segmentation can be used to break the camouflage of hidden objects and the

detected regions can then be classified. Similarly, in Medical Image Analysis,

segmentation can be used to detect abnormal tissue patterns such as multiple

sclerosis lesions in the brain. Both tasks are illustrated in figure 1.6. There

are many other applications of being able to segment figure from ground
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(a) (b)

Figure 1.6: Applications of texture segmentation: (a) breaking the camou-
flage of hidden objects and (b) detecting multiple sclerosis lesions in the
brain. Image courtesy of [Galun et al., 2003].

including applications in graphics, such as image editing and background

substitution [Rother et al., 2004], and document processing, such as extract-

ing printed text regions [Jain and Bhattacharjee, 1992].

1.3 Texture synthesis

The goal of synthesis is to compose an output image in the form of a specified

target texture [Ashikhmin, 2001, De Bonet, 1997, Efros and Leung, 1999,

Heeger and Bergen, 1995, Popat and Picard, 1993, Portilla and Simoncelli,

2000,Zhu et al., 1998]. One instance of the problem is to simply synthesise

more of the target. The resultant output must be perceptually similar to the

target but not identical. This is illustrated in figure 1.7. A variant of the

problem is to synthesise the target from a novel view or under a different

illumination [Zalesny and Van Gool, 2000] or even map the target onto a

different surface [Dana et al., 1999].

Texture synthesis has many interesting applications. It can be used to
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Target Synthesised

Figure 1.7: The texture synthesis problem: Given target textures on the left,
the task is to synthesise similar, but not identical, output images such as the
ones on the right. Results from [Efros and Freeman, 2001].

synthesize high resolution texture detail in low resolution images [Hertzmann

et al., 2001, Pickup et al., 2003, Zalesny and Van Gool, 2000]. It can also

be combined with inpainting to fill in holes left by deleting large unwanted

objects in images [Criminisi et al., 2004]. A texture from one image can be

synthesised onto another image to effect texture transfer [Efros and Freeman,

2001,Hertzmann et al., 2001] and various painting filters can be learnt so as

to render new content in a different style [Drori et al., 2003,Hertzmann et al.,

2001]. Some of these applications are illustrated in figure 1.8.

While this thesis is not explicitly concerned with texture synthesis, study-

ing the problem can be instructive as it is closely intertwined with texture

classification. For example, one way of classifying textures is via the analysis-

by-synthesis route in which a model is first constructed for synthesizing tex-

tures and then inverted for the purposes of classification. Conversely, a tex-

ture classification algorithm which is capable of determining the probability

with which an image or texture patch belongs to a particular class will find

many applications in synthesis. For instance, it could be used to provide

a termination criteria for synthesis algorithms which mainly rely on human

intervention at the moment. Furthermore, it could be used to automatically

determine the quality of a synthesized image. In a sense, the two problems
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Figure 1.8: Applications of texture synthesis: (a) removing unwanted ob-
jects [Criminisi et al., 2004]. (b) texture transfer where the original textured
image (left) has been resynthesised so as to look like a carpet (middle) and
rug (right) [Hertzmann et al., 2001], (c) artistic filtering where an original
painting is resynthesised in a different style [Hertzmann et al., 2001].

can be thought of as duals, since a solution to one will quickly lead to a way

of validating the other.

1.4 Texture compression and coding

Texture compression schemes aim to minimise the amount of data required

to store a textured image [Bradley et al., 1993,Chai et al., 1999,Chellappa

et al., 1985,Li et al., 1995,Li et al., 2000,Meyer et al., 2000,Popat and Pi-

card, 1993]. In general, there are two approaches to compression, lossless

and lossy. Most algorithms for texture compression tend to be lossy and
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(a) (b)

Figure 1.9: Texture compression: (a) the original fingerprint image is on
the left while the image on the right has been compressed more than 18
times without much compromise in quality. The compression rate is 0.444
bits/pixel down from 8 bits/pixel for the original image and the PSNR value
is only 35.65 dB. Similarly for (b), the original image is on the left while the
image on the right has been compressed to 0.5 bits/pixel with PSNR 31.89
dB. Results from [Chai et al., 1999].

trade off fidelity for higher compression ratios (see figure 1.9). In fact, for

certain applications, texture synthesis methods based on compact models

can be thought of as providing excellent compression which is very “lossy”

yet where the “compressed” image is perceptually equivalent to the original.

It should be noted that texture compression algorithms are not the same

as standard image compression algorithms such as JPEG. The former are

specifically designed to exploit the statistical structure of textured images

and to outperform image compression algorithms in this particular domain.

For instance, the WSQ texture compression algorithm of [Bradley et al.,

1993] is good at compressing fingerprints and, at the same compression ratio

as JPEG, produces a much more accurate image which has all the impor-

tant high frequency signals while getting rid of the typical blocking artifacts

that plague JPEG. Figure 1.9a shows an example of a fingerprint image

compressed to less than an eighteenth the size of the original without any

significant loss of detail.

Compression algorithms also have a link to segmentation and boundary
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detection [Froment and Mallat, 1992,Kocher and Kunt, 1983,Ran and Far-

vardin, 1992]. Typically, in a natural image, people pay more attention to

foreground objects rather than the background (which can often be out of

focus). Therefore, if a segmentation algorithm can extract the foreground

object then more bits can be used to represent it as compared to the back-

ground. Similarly, people are sensitive to edges caused by object boundaries.

Hence, different compression schemes can be applied to the object’s shape or

contour and the textured region in the interior.

The main applications of compression arise when large amounts of data

needs to be stored or transmitted. For instance, most multimedia applica-

tions such as digital encyclopedias, videos and games as well as databases of

astronomical and remotely sensed images rely heavily on compression tech-

niques to manage the data. The FBI also uses texture compression to store

its large database of fingerprint images. Similarly, applications such as video

telephony and teleconferencing are only made possible by fast and efficient

compression schemes.

1.5 Shape from texture

Textures provide a powerful shape cue to humans and the goal of shape

from texture is to recover the 3D shape of a textured object from its im-

age [Blake and Marinos, 1990,Clerc and Mallat, 2002,Lindeberg and G̊arding,

1993,Knill, 2001,Lobay and Forsyth, 2004,Malik and Rosenholtz, 1997,Todd

and Oomes, 2002,Witkin, 1981]. Most shape from texture algorithms work

on the assumption that the patterns of texture on a surface are regular and

any deformations visible in an image are due to surface geometry (see fig-

ure 1.10). Shape from texture algorithms come in many flavours and tackle
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different aspects of the problem. There are those that assume orthographic

versus perspective projection, those that assume that the underlying physical

surface is planar or curved, those that focus on individual texture elements

versus their statistics (such as isotropy or homogeneity) and therefore those

that recover global surface models or only local estimates of the differential

geometric parameters at points on the surface.

Figure 1.10: Recovering the 3D shape of clothing using a shape from texture
technique. Results from [Lobay and Forsyth, 2004].

As [Forsyth, 2002] notes, shape from texture has tended to be “a core

vision problem” without many immediate practical applications. However,

some of the real world problems to which shape from texture has been applied

include defect detection of materials on inclined planes [Plantier et al., 2002]

and image based rendering of clothing [Lobay and Forsyth, 2004].

1.6 Psychophysics and Neurobiology

Results from Psychophysics and Neurobiology have had a great influence on

many aspects of Computer Vision research into texture including classifi-

cation and segmentation [Beck, 1983, Beck et al., 1987, Bergen and Landy,

1991, Bergen, 1991, Gurnsey and Browse, 1987, Julesz et al., 1973, Julesz,

1981,Malik and Perona, 1990], synthesis [Heeger and Bergen, 1995,Portilla

and Simoncelli, 2000, Zhu et al., 1998] and shape from texture [Cumming
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et al., 1993, Gibson, 1950, Knill, 2001, Li and Zaidi, 2001, Rosenholtz and

Malik, 1997,Todd et al., 2004].

Julesz maintained that “in all texture perception the preattentive system

is dominant” and his psychophysical experiments laid much of the founda-

tion for the research that followed in segmentation and classification. He

demonstrated that the process of texture discrimination by humans is very

different from that of form recognition and hypothesized that textures can

be discriminated pre-attentively (in less than 100 ms) by only looking at

the first and second order statistics of pixel intensities [Julesz, 1962, Julesz

et al., 1973]. Furthermore, he conjectured that any two textures with the

same third order statistics, i.e. identical distributions of the co-occurrence

of intensity triples, would not be effortlessly distinguishable. The conjecture

was ultimately proved wrong [Caelli and Julesz, 1978] but lead to the al-

ternative hypothesis that texture discrimination by the preattentive visual

system is based on the density of texture primitives called textons, but not

on their spatial or positional relationships [Julesz, 1981, Julesz and Bergen,

1983]. This view has proved to be very influential, and while the definition

of textons might have evolved over the years, many modern day texture clas-

sification algorithms [Cula and Dana, 2004,Hayman et al., 2004,Leung and

Malik, 2001] still follow the basic paradigm of discrimination by looking at

the differences in the first order texton statistics.

Neurobiology and Psychophysics have also played a major role in iden-

tifying what features should be extracted from images for texture analy-

sis [Beck et al., 1987, Caelli and Moraglia, 1985, Daugman, 1985, Fogel and

Sagi, 1989,Malik and Perona, 1990,Turner, 1986]. Many studies have con-

cluded that the centre-surround and simple cells found in the mammalian

visual system can be effectively modelled by Gabor or Gaussian derivative
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filters. As such, filter banks of Gabors and Gaussians at multiple scales, ori-

entations and phases are frequently used to extract texture features. How-

ever, [Olshausen and Field, 2005] caution that much is still unknown about

the primary visual cortex and future theories might move away from the

current interpretation of V1 as being a “Gabor pyramid”.

The study of human visual perception has also influenced other areas of

texture research. Inspired by Julesz’s conjecture, [Portilla and Simoncelli,

2000] developed a minimal statistical texture description and tried to make

it consistent with human visual perception so as to use it for synthesis. In

segmentation, the Gestalt cues of proximity, similarity, closure and simplicity

have often been used as guiding principle while designing algorithms [Reed

and Wechsler, 1990,Ren and Malik, 2003,Wertheimer, 1958]. Finally, numer-

ous psychophysical studies have investigated how various aspects of surface

texture influence an observer’s perceptions of the 3D shape of objects. Us-

ing such psychophysical evidence, [Sakai and Finkel, 1994] propose a network

model for recovering shape from texture based on spatially averaged peak fre-

quencies. More recently, [Todd et al., 2004] conducted experiments to show

that the constraints assumed by most algorithms are too severe and that

human perception of shape is much more robust than previously assumed.

1.7 Problem statement: Texture classification

The form of the texture classification problem addressed in this thesis is the

categorization of materials on the basis of their appearance in single images

(see figure 1.11). Furthermore, no constraints are imposed on the acquisition

of the training or novel images and, in particular, no a priori knowledge

of their viewing or illumination conditions is required. Finally, in order to
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Figure 1.11: The classification problem addressed in this thesis: Given a sin-
gle, uncalibrated, previously unseen image of a textured material, categorise
it into one of a set of pre-learnt classes.

make the problem as general as possible, no use is made of colour information

whatsoever to assist classification. A material’s colour is an additional and

distinct source of information as compared to its texture. If its use was felt

necessary in a particular application then the algorithms developed in this

thesis could be extended to incorporate colour into the classification scheme.

Though, it should be noted that while colour provides a very strong cue

for discrimination, it can also be misleading due to the colour constancy

issue [Funt et al., 1998].

Since almost no restrictions have been placed on the problem as stated, its

scope is broad and it finds many applications in diverse fields. However, this

also implies that the problem is exceedingly hard. In particular, what makes

the problem so difficult is that unlike other forms of classification, where the
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Figure 1.12: The change in imaged appearance of the same texture (Plas-
ter B, texture # 30 from the Columbia-Utrecht database) with variation in
imaging conditions. Top row: constant viewing angle and varying illumina-
tion. Bottom row: constant illumination and varying viewing angle. There
is a considerable difference in the appearance across images.

objects being categorised have a definite structure which can be captured

and represented, most textures have large stochastic variations which make

them difficult to model. Furthermore, textured materials often undergo a sea

change in their imaged appearance with variations in illumination and camera

pose (see figure 1.12). For instance, keeping all the parameters fixed but just

changing the scale or the rotation can result in a completely new texture with

new descriptors and different statistics. This is illustrated in figure 1.13. The

variation can be just as large if the illumination is changed. As figure 1.14

demonstrates, changing just the illuminant’s elevation or azimuthal angle

Change in viewpoint Change in surface orientation

Figure 1.13: The effect of scale and rotation on textures. On the left, the
camera was moved away from the brick wall. On the right, the surface
was rotated in plane by 90◦ while all other imaging conditions were left
unchanged.
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Change in elevation Change in azimuth

Figure 1.14: The effect of change in illumination direction. All parameters
are kept fixed except, on the left, the illuminant’s elevation is changed while
on the right the azimuth is varied.

can have a marked impact on the appearance of a texture [Chantler, 1994].

Dealing with these variations successfully is one of the main tasks of any

classification algorithm.

Another factor which comes into play is that, many a time, two materials

when photographed under very different imaging conditions can appear to

be quite similar, as is illustrated by figure 1.15. It is a combination of all

these factors which makes the texture classification problem so challenging.

Figure 1.15: Small inter class variations between textures can make the prob-
lem harder still. In the top row, the first and the fourth image are of the same
texture while all the other images, even though they look similar to at least
one other image, belong to different classes. Similarly, in the bottom row,
the images appear similar and yet there are three different texture classes
present.
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1.8 Thesis outline and novelty

The remainder of the thesis is organised as follows. Chapter 2 presents a

survey of the literature and places the current versions of the classification

and synthesis problems in a historical perspective. We review how Julesz had

initially postulated textures to be the distribution of fundamental primitives

such as line terminators, crossings, intersections, etc. and how this definition

has now evolved to become the distribution of filter responses computed at

multiple orientations and scales. We also review how the texture classification

problem has advanced from segregation of binary patterns to the classifica-

tion of grayscale images of synthetic 2D textures to the classification of real

world 3D materials. The prominent role that filter banks have played during

this evolution is charted and some of the more relevant literature discussed

in detail. An overview is also presented of the different databases used in

this thesis to measure classification performance.

The state of the art for classifying materials photographed under real

world conditions is the algorithm of [Leung and Malik, 2001]. While the

algorithm is a major improvement on previous work, it also has some severe

limitations. In particular, the algorithm requires multiple registered images,

with known viewpoint and illumination, both during training and classifica-

tion. Furthermore, it is not robust to viewpoint changes (such as those due

to rotation or scaling) and operates is a very high dimensional space.

Chapter 3 introduces a filter bank based solution to the problem of real

world texture classification which overcomes all these limitations. The em-

phasis in this chapter is therefore on two points: (a) coming up with a basic

framework to classify single, uncalibrated images of materials and (b) de-

signing low dimensional, highly selective yet invariant filter banks so as to

reduce the number of models needed to characterise texture classes. The per-
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formance of the new filter banks is empirically compared to traditional filter

sets by classifying all 61 materials present in the Columbia-Utrecht database.

It is demonstrated that the new filter banks outperform their more traditional

counterparts (including those of Leung and Malik), especially when having

to cope with imaging variations due to rotations.

Chapter 4 then extends this basic classification framework. Two tech-

niques for model reduction are developed and compared to state of the art

methods in the field. It is shown how the number of models can be reduced

to a handful without impairing classification performance. The effect of vary-

ing the parameters of the algorithm are also studied including the effects of

size of texton dictionary and number and choice of training images. Finally,

we validate the conjecture that the first order statistics of textons are suf-

ficient for classification and experimentally verify on the Columbia-Utrecht

database that no significant information is being lost by working within a

rotationally invariant framework.

The algorithm of Leung and Malik is motivated to a large extent by

Psychophysics and Julesz’s conjecture. Another very successful approach,

that due to Konishi and Yuille [Konishi and Yuille, 2000], favours a more

statistical approach based upon Bayesian classification. At first glance, these

two methodologies might seem disparate but chapter 5 draws a connection

between the two and shows how they can be made equivalent under a suitable

choice of representation and similarity measure. In this chapter, it is first

shown that texton frequencies and binned histograms form the same semi-

parametric representation of filter response distributions. Next, it is noted

how näıve Bayesian classification is equivalent to nearest neighbour matching

using KL divergence or cross entropy as a similarity measure. Coupling these

two facts together permits the implementation of a Bayesian classifier using
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texton frequencies and allows direct comparisons between the methodologies

of [Konishi and Yuille, 2000] and [Leung and Malik, 2001].

Chapter 6 then turns to the important question of whether multi-scale,

multi-orientation filter banks are necessary for texture classification. Two

results are established empirically. First, it is demonstrated that if the filter

responses obtained using banks with support as large as 49×49 are replaced

by compact image patches with neighbourhood sizes as small as 3× 3, 5× 5

or 7 × 7 then equivalent, or even superior, performances can be achieved.

Given the contentious nature of the result it is validated on three separate

databases. Second, it is also shown that the performance of filter banks is

inferior to that of image patches with equivalent neighbourhoods. This is

verified for different neighbourhood sizes. Both results run contrary to what

is commonly held true in the texture literature and theoretical arguments are

presented as to why patch based classification can outperform filter banks.

Chapter 7 is concerned with estimating the illuminant’s direction from

textured images. The aim is to develop a robust method which can be used

to infer properties of the imaging conditions and thereby aid future clas-

sification. Most traditional formulations tend to tackle the problem under

assumptions of constant albedo and strict Lambertian conditions. However,

these stringent conditions are rarely met in the real world. In this chapter,

we take a first step towards easing these restrictions. We develop a the-

ory for estimating the illuminant’s azimuthal angle from single images while

making only general assumptions about the texture’s surface and albedo. De-

viations from the perfect Lambertian model due to shadows, specularities,

inter-reflections, etc. are allowed as long as they can be incorporated into an

albedo map drawn from a log-normal distribution. This permits our theory

to be applied to all available images in the Columbia-Utrecht database and
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it is shown to give good results even when its basic assumptions are violated.

Finally, the theory is extended to cover the case where extra information is

available in the form of a reference image.

We end in chapter 8 by exploring some of the avenues for future work

and discussing some of the conclusions that can be drawn from this thesis.



Chapter 2

Literature Survey

In this chapter, we review the evolution of the texture classification problem

over the last decade or so and highlight some of the important achievements

and innovations made in attacking the problem. Section 2.1 presents an

overview of the field while section 2.2 covers some of the particularly relevant

literature in greater detail. Finally, section 2.3 discusses the databases that

have been used in this thesis to benchmark performance.

2.1 Overview

Julesz’s work on the visual perception of texture laid the ground for a lot

of the subsequent research that followed, both in analysis and in synthe-

sis. Since then, many different approaches have been formulated, includ-

ing those based on filter banks [Konishi and Yuille, 2000, Leung and Ma-

lik, 2001, Schmid, 2001] and wavelets [Chang and Kuo, 1993, Do and Vet-

terli, 2002, Laine and Fan, 1993], affine invariant measurements [Caenen

and Van Gool, 2004, Chetverikov, 2000, Lazebnik et al., 2003b, Lazebnik

et al., 2003a] photometric stereo [Chantler et al., 2002b, Penirschke et al.,

23
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2002,Wu and Chantler, 2003], Markov random fields [Chellappa and Chat-

terjee, 1985, Cross and Jain, 1983, Kashyap and Khotanzad, 1986, Lorette

et al., 2000], co-occurrence matrices [Gotlieb and Kreyszig, 1990, Haralick

et al., 1973], Voronoi polygons [Tuceryan and Jain, 1990] and fractals [Chen

et al., 1989,Keller et al., 1989,Super and Bovik, 1991].

In this section, we present an overview of some of these approaches. The

goal is not to be comprehensive or exhaustive but rather to put into per-

spective some of the important research that has shaped our understanding

of texture as it is today. We begin with a discussion on recent progress over

the last decade or so and review how the classification problem has evolved

from binary pattern discrimination to 2D texture classification and finally

to 3D texture classification. Proposed solutions using filter banks and co-

occurrence have coped by building more and more complex representations

and this evolution is charted as well. In subsection 2.1.1, the emphasis is pri-

marily on filter bank based methods as they have provided key breakthroughs

and insights into the field. Since filters have played such a crucial role, work

on designing optimal filter banks for texture classification is reviewed next

in subsection 2.1.2. Finally, subsection 2.1.3 looks at some MRF and other

methods which have had an impact on the field. While the stress will be

on approaches to texture classification some synthesis techniques will also be

considered as the two problems are closely related.

2.1.1 Recent progress

Much of the early work on texture classification was concerned with Julesz’s

conjecture [Julesz et al., 1973] that two textures were perceptually indistin-

guishable if they had identical second order statistics (i.e. the distribution of

intensities over pairs of pixels was identical). Efforts to (dis)prove the sup-



2.1. OVERVIEW 25

(a) (b)

Figure 2.1: The texture pair in each image have identical second order statis-
tics. Yet, the two textures in (a) are not pre-attentively distinguishable while
the pair in (b) are. Julesz surmised that this was because the textures in (b)
had different texton densities. Image courtesy of [Tuceryan and Jain, 1998].

position focused on whether binary image patterns, such as the ones shown

in figure 2.1, were pre-attentively discriminable by the human eye or not.

The conjecture was eventually disproved [Caelli and Julesz, 1978] but only

to be replaced by a statistical theory of textons [Julesz, 1981]. The theory

postulated that textons were fundamental texture primitives such as line ter-

minators, corners, intersections, etc. and two textures having different texton

densities were easily distinguishable.

All this while, the classification task was to separate, in a binary image,

two textures formed by the repeated placement of basic micro patterns. Thus,

efforts were concentrated on synthetic images with little attention being paid

to real world textures (with exceptions such as [Coggins and Jain, 1985] which

presented results on the Brodatz album). The theory of textons was prevalent

till the late eighties by when its two major shortcomings were established.

The first was about how to formalise a list of universal textons and the second
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was how to generalise the theory to gray scale images.

Meanwhile, people had been experimenting with using filter banks for

texture analysis throughout the decade [Coggins and Jain, 1985,Caelli and

Moraglia, 1985, Faugeras, 1978, Fogel and Sagi, 1989, Laws, 1980, Turner,

1986, Unser, 1986]. In fact, Julesz had tried to explain counter examples

to his second order statistics theory using filter outputs [Julesz et al., 1973]

and then later posited a link between textons and filter banks [Julesz and

Bergen, 1983]. And, as the limitations of the texton theory were realised,

filter bank based methods started gaining popularity. Two very influential

theories which drew attention away from textons and sparked an alternate

Figure 2.2: Results from [Bergen and Adelson, 1988]: The two textures
shown in (a) get easier or harder to distinguish as the size of the “L” pat-
tern increases in (b) or decreases in (c) even though the density of crossing
and terminators has remained the same. However, this discriminability is
predicted well by the responses of a centre surround filter shown in (d) - (f).
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interest in filter banks were developed in [Bergen and Adelson, 1988,Malik

and Perona, 1990]. Bergen and Adelson demonstrated that the responses of

size tuned centre surround filters could be used to predict the discriminability

between two textures. For instance, figure 2.2 shows that if the size of the

basic micro pattern is increased (decreased) then the density of terminators

and crossings remains unchanged whereas humans find it easier (harder) to

distinguish between the two textures. Such behaviour is faithfully mimicked

by the distribution of filter responses as the difference between the total

energies of the two distributions increases or decreases according to human

perception. The results of [Voorhees and Poggio, 1988] backed up this theory

as they showed how basic texture elements for natural gray scale images could

be computed by thresholding the outputs of centre surround filter followed by

morphological operations. They also showed how texture boundaries could

be computed for natural images.

Malik and Perona also drew inspiration from early visual processing in

humans and developed a filter bank based model with biological plausi-

bility as its cornerstone. Their computational results accurately predicted

psychophysical data about the degree of texture discriminability and their

method was able to successfully distinguish between cases previously thought

to be very hard. The work of [Freeman, 1992] and [Perona, 1992, Perona,

1995] was also influential, but for more computational reasons, as they pro-

vided methods of calculating filter responses at all possible orientations and

scales from a small basis set.

One of the major advantages that filter banks enjoyed over texton feature

methods was that they could be used to analyse gray scale images. This re-

sulted in the problem of 2D texture classification being brought to the fore.

The emphasis shifted from distinguishing patterns in synthetic binary images
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to classifying gray scale images of real world textures. Due to computational

limitations, the early filter bank based methods were only able to use low

order moments to characterise the distribution of filter responses. The fea-

ture extraction scheme that became standardised was to form a long vector

whose components were the mean or variance of each of the individual filter

response distributions. Some processing of filter responses, such as rectifi-

cation, energy measurement or conversion to a rotationally invariant frame,

was also done. A classifier of choice was then trained on the feature vec-

tors and used to classify novel images. Typical examples of such frameworks

are [Greenspan et al., 1994,Haley and Manjunath, 1995, Smith and Chang,

1994]. Performance was generally assessed on variations of the Brodatz al-

bum [Brodatz, 1966] and fairly good classification results were obtained.

From the mid nineties onwards, filter bank and wavelet based methods

became increasingly successful at texture classification and synthesis and

came to be regarded as the method of choice. Their improved performance

was largely due to the fact that richer representations of the filter response

distributions were being learnt. The representations were richer in primarily

two respects: first, full filter response distributions were learnt as opposed

to recording just the low order moments and second, the joint distribution,

or co-occurrence, of filter responses was learnt as opposed to independently

learning distributions for each filter separately. Another general trend was

that the number of filters and wavelets used kept increasing so as to measure

features at many scales and orientations.

A good example of the progression in complexity of filter response rep-

resentations comes from texture synthesis. The synthesis task is to take a

target texture and generate an output image which is similar but not iden-

tical to the target. The synthesis techniques developed during this phase of
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progression heavily influenced the next generation of classification algorithms

and so we take a brief detour and review them now.

Synthesis techniques by the mid nineties had graduated from using the

mean and variance of distributions to model textures. Instead, two of the

leading algorithms of the time [Heeger and Bergen, 1995, Zhu et al., 1996],

advocated synthesis by forcing the marginal filter distributions of the output

image to match the marginal filter distributions of the target texture. Heeger

and Bergen’s method formed a steerable pyramid using twelve filters while

Zhu et al. relied on between four to six adaptively chosen ones. The main

point of difference between the methods came from the realization that there

exist many images which have the same filter response marginals. From

amongst all these, [Zhu et al., 1996,Zhu et al., 1998] preferred choosing those

images which were drawn from a distribution having maximal entropy – as

this imposed no additional constraints on the image PDF.

Synthesis results for both algorithms are shown in figure 2.3. Drawing

samples from the image PDF did result in improved results for Zhu et al.

though the use of Gibbs sampling involved significant computational costs.

However, choosing the distribution with maximal entropy left the image free

to vary considerably as long as the marginals matched. This meant that

the synthesised images could be noisy and did not necessarily have the same

spatial structure as the target texture beyond that which was captured by

the local filter support.

The next step forward was when DeBonet [De Bonet, 1997] extended

Heeger and Bergen’s algorithm to match the joint distribution of filter re-

sponses. There was no explicit texture model and the representation was

defined non-parametrically in terms of “parent vectors” in the target image.

Essentially, the probability of observing a particular filter response vector
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Figure 2.3: Texture synthesis using filter banks: the algorithm of Heeger
and Bergen completely breaks down for structured textures. The method
of Zhu et al. is an improvement as the overall structure of the pattern is
discernible. However, the synthesis is noisy and has missing connectors. De
Bonet’s algorithm should be better as it models the joint structure over larger
scales but it is still not successful when asked to synthesise the original image
shown for Heeger and Bergen. Even the method of Portilla and Simoncelli
fails for textures with global structure.

was determined by counting the number of parent vectors which lay within

a certain L2 distance of it in filter space. This probability distribution was

sampled from to synthesise a filter response pyramid and thereby the output

image. Modelling the joint distribution over the filter pyramid resulted in

the target’s spatial structure being captured over a range of scales and not

just being restricted to the local filter support. However, the algorithm could
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still not capture long range spatial interactions and had a tendency to tile

the input image.

Finally, [Simoncelli and Portilla, 1998,Portilla and Simoncelli, 2000] im-

posed constraints on the joint PDF of 18 filter responses in order to validate

Julesz’s conjecture from psychophysics that two textures would be indistin-

guishable if their constraint functions had identical statistics. The statistical

constraints imposed were that the low order moments of pixel intensities and

filter response marginals must match between target and output as must the

central regions of the auto and cross-correlation functions of filter magni-

tudes and phases. Using the correlations helped to impose both the target’s

local structure and long range interactions onto the output image. Synthesis

results are shown in figure 2.3. All these methods cited biological plausibility

for choosing filters to mimic the human visual system in an effort to synthe-

sise perceptually similar textures. Yet, even though the results had improved

tremendously as more filters were used and more effort put into modelling

their PDF, the synthesised results were often not close to the target textures.

Thus, biological plausibility and psychophysical arguments did not appear to

hold the key for generating good synthesis results.

Right through this period of progression, synthesis and classification al-

gorithms treated textures as pure albedo patterns painted on a flat surface.

Under such an assumption, a single image could completely characterise all

the possible variations of a texture patch. For instance, synthetic affine

transformations of the image were accurate reflections of what the texture

would look like if physically rotated and scaled in the real world. However, it

soon became apparant that such 2D texture models were not very physically

plausible as they ignored all 3D effects including surface normal variations,

BRDF variations, illumination changes, scale and perspective effects, etc.
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Realizing the need to study and model 3D texture effects, [Dana et al.,

1997,Dana et al., 1999] compiled the Columbia-Utrecht (CUReT) database

and included over 200 images of each of 61 materials taken under different

viewpoints and illumination (see subsection 2.3.1). They initially used the

database to demonstrate that 3D texture synthesis on a cylindrical surface

gave much more realistic results as compared to traditional 2D texture map-

ping. However, the database later came to be an invaluable tool not just for

synthesis but also for building and testing theoretical models of 3D textures.

Since 3D effects have a dramatic impact on the imaged appearance of

real world textures (see figure 1.12), the next phase in texture classification

was to bring 3D textures within the ambit of the problem. While it might

be natural to assume that such effects could be compensated for by building

physical models of 3D textures this did not turn out to be the case (see

subsection 2.1.3). Instead, the lead was taken once again by filter bank

based methods.

Leung and Malik [Leung and Malik, 1999, Leung and Malik, 2001] were

amongst the first to seriously attempt the problem of classifying 3D textures

under varying viewpoint and illumination. They made an important innova-

tion by giving an operational definition of a texton based on filter responses

and clustering. They defined a 2D texton as a cluster centre in filter response

space. This not only enabled textons to be generated automatically from an

image, but also opened up the possibility of a universal set of textons for

all textures. To compensate for 3D effects, they proposed 3D textons which

were cluster centres of filter responses over a stack of 20 images with represen-

tative viewpoints and lighting. The frequency distribution of these textons

was shown to be sufficient for classifying a set of registered novel images

taken under the same conditions. A nearest neighbour classifier based on
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the χ2 statistic was used. While the paper was very important as it set up a

framework in which 3D textures could be classified successfully, it had serious

limitations in that it needed multiple images during classification which had

to be taken under exactly the same conditions as those during training. The

paper is discussed in greater detail in subsection 2.2.3.

Meanwhile, filter banks were also posting the best results in other closely

related areas. In particular, the success of Bayesian classification applied to

filter responses was convincingly demonstrated by Konishi and Yuille [Kon-

ishi and Yuille, 2000]. They learnt the joint PDF of the responses of six filters

for classes such as air, road, vegetation, etc. and used them to label individ-

ual pixels in the Sowerby and San Francisco outdoor datasets (described in

subsection 2.3.2). Thus, they were able to do classification and segmentation

relying solely on domain specific knowledge. There was also some preliminary

investigation to see whether PDFs learnt from one dataset could be used to

classify and segment the other. Unfortunately, special attention was not paid

to the fact that 3D textures vary considerably with imaging conditions and

only a single distribution of filter responses was learnt for each class. The

paper is discussed in more detail in subsection 2.2.1.

Similarly, [Schmid, 2001] modelled the joint PDF of thirteen rotationally

invariant filters for the purposes of image retrieval. In addition, even the

co-occurrence of these thirteen dimensional filter responses was modelled to

achieve impressive results. More details are given in subsection 2.2.2.

Cula and Dana [Cula and Dana, 2001, Cula and Dana, 2004] then pro-

posed a system which addressed some of the major shortcomings of Leung

and Malik’s algorithm. They demonstrated that 2D textons (learnt from

filter responses of single images instead of image stacks) could themselves be

used for uncalibrated, single image classification without compromising on
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performance. The use of 2D textons allowed a texture to be characterised

by multiple probability distributions (models). Theoretically as many as one

from each training image could be learnt to sample the effects of viewpoint

and illumination variations. In practice, only a few models were needed as the

rest were discarded by a manifold shape preserving technique for model reduc-

tion. A somewhat similar approach was independently suggested in [Varma

and Zisserman, 2002a] and is developed in chapters 3 and 4. The overarching

framework of both these approaches was also very similar to the algorithm

of [De Bonet and Viola, 1998] though the details were significantly different.

The problem of reducing the number of models required to characterise

a texture is a major one and, broadly speaking, two different approaches

have been proposed. The first approach is Geometric and focuses on build-

ing affine invariant texture descriptors so as to reduce the number of models

needed to cope with variation in camera pose. [Schaffalitzky and Zisserman,

2001] exploited the fact that a texture with sufficient directional variation can

be pose normalised by maximising the weak isotropy of its second moment

matrix (the technique is applicable in the absence of 3D texture effects). In

essence, two images of the same texture which differ by an affine transforma-

tion are reduced to a canonical frame where they differ by only a similarity

transformation. Full invariance can then be achieved by using a scale and

rotation invariant filter bank to extract features.

One drawback of this technique is that the proposed normalisation is

global rather than local. Not only would local normalisation be more robust

but it would also allow the method to be extended to textures which are

not globally planar but which can be approximated as being locally planar.

Realizing this, [Lazebnik et al., 2003a, Lazebnik et al., 2003b] proposed an

alternative method of generating local, affine invariant, texture features. In
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their framework, certain interest regions were first detected using a Lapla-

cian blob detector. The characteristic scale at each point was determined

and the region pose normalised locally. Spin images were then used instead

of filter banks to generate affine invariant features for each region. The sys-

tem achieved good classification results on both the Brodatz and the UIUC

datasets. The paper is discussed in subsection 2.2.5.

In the second approach to model reduction, concepts from Machine Learn-

ing can be used to select a subset of the models while maximising some cri-

teria of classification and generalisation. A good example of this is [Hayman

et al., 2004] where the nearest neighbour classifier used in [Varma and Zisser-

man, 2002a] is replaced by a Support Vector Machine. They show that this

not only improves classification performance on the CUReT database but

also provides a principled way of selecting the required models. The average

number of support vectors used is demonstrated to be 10 - 20% lower than

the number of models required by a nearest neighbour classifier. The paper

also considers how far pure Learning approaches can go towards coping with

imaging variations, especially those due to scale. Not surprisingly, the con-

clusion is that classification performance is acceptable as long as the scaled

images are included in the training set but deteriorates very rapidly if they

are not. A similar effect was observed for different instances of the same

material, i.e. training on one instance of a material was no guarantee that

another instance could then be classified correctly.

To summarise, the texture classification problem has matured consider-

ably over the last two decades. The emphasis in the eighties was on separat-

ing patterns in synthetic binary images. This progressed in the early nineties

to attempting classification of gray scale images of real world textures but

with 2D variations due to synthetic rotations and scaling. Finally, in the late
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nineties, the classification task embraced real world 3D textures with real

variations caused due to changing viewpoint and illumination. Throughout

this period the most effective solution had been provided by filter banks

which had themselves progressed by building more and more complex repre-

sentations. They were introduced at first due to their biological plausibility

and were soon seen as operators to extract features at multiple orientations

and scales. Initially, during the early nineties, feature vectors were formed

from only the mean and variance of filter response distributions. This has

now changed considerably and the full joint PDF of filter responses is mod-

elled. However, it must be pointed out that some recent papers still persist

in attempting the 2D problem and approach classification via the dated tech-

nique of concatenating the low order moments of distributions to form feature

vectors [Pun and Lee, 2003,Sebe and Lew, 2000,Singh and Singh, 2002].

2.1.2 Optimal filtering

All the algorithms discussed so far had chosen their filter banks heuristically

rather than by optimising classification rates. It is therefore expected that the

performance of the algorithms will get even better if their filters were to be

replaced by ones optimised specifically for the given classification task. While

attempts have been made at designing optimal filter banks they have not

had much of an impact on the field. This is primarily because such methods

tend not to minimise the classification error itself but rather optimise other

criteria, such as the separation between filter responses, in the hope that this

will decrease the error. Such choices are necessary as it is often impossible to

analytically express classification error as a function of the input filter bank

while numerical techniques for classification error minimization are often too

costly. As such, these optimisation techniques are not widely in use but are
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nevertheless important as tools to reason about the filtering process. We

therefore present a very brief overview of different optimisation methods in

this subsection.

On one end of the spectrum are methods which determine filter banks

and wavelets to be optimal because they are biologically plausible, or be-

cause they are optimally localised in space and frequency [Daugman, 1985],

or because of their shift invariance and regularity properties [Mojsilovic et al.,

2000]. A bit more relevant are methods which are optimal at characterising

textures though these are not necessarily optimal at discrimination. Such

methods include those which derive filters from the eigenvectors of the au-

tocorrelation function [Ade, 1983] and those derived by PCA/ICA of image

patches [Messer et al., 1999]. Another such method is the predictive linear

filter of [Randen, 1997] which turns out to be extremely similar to a Gaussian

Markov random field model [Li, 2001] where the parameters are learnt us-

ing the pseudo-likelihood estimate. However, such methods are geared more

towards characterising textures rather than discriminating between them.

Moving along the spectrum, another class of methods is based on choos-

ing the best subset of filters from a fixed filter bank. For example, [Zhu

et al., 1998] propose starting with a large set of filters and then iteratively

choosing an optimal subset which maximises the L1 norm of the probability

distributions between classes. Similarly, [Bovik et al., 1990,Dunn and Hig-

gins, 1995, Weldon and Higgins, 1996] have proposed methods to optimise

the parameters of Gabor filters for texture classification. However, these

approaches are restricted by the need for the optimal filters to be already

present within the initial basis set.

A more general approach is taken by methods which apply techniques

from Discriminant Analysis. Most such approaches focus on the two class
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problem and theorise that classification errors must decrease if the separa-

tion between the filter responses of the two classes is maximised (due to the

reduced PDF overlap). Many different ways of measuring the distance be-

tween two classes have been proposed in the literature. Three of the most

popular ones are due to Fisher [Duda et al., 2001], Unser [Unser, 1986] and

Mahalanobis and Singh [Mahalanobis and Singh, 1994]. Each of the three

optimisation criteria are derived by making different assumptions about the

underlying distribution which generated the filter responses. The criteria are

JF =
(µ1 − µ2)

2

σ2
1 + σ2

2

; JU =
(µ1 − µ2)

2

µ1µ2

; JMS =
µ1

µ2

(2.1)

where µ1, σ1, µ2 and σ2 are the means and variances of the two classes respec-

tively. Interestingly, it should be noted that the linear SVM also provides a

measure of the maximum separation between two classes and relates it di-

rectly to classification. In fact, the normal to the separating hyperplane acts

as an optimal filter (see subsection 6.4.2). As such, a linear SVM should of-

ten turn out to be the best optimizer, specially as its underlying assumptions

are the least restrictive. However, a major drawback of such methods is that

they do not generalise readily to many class problems. Even though an N

class problem can be decomposed into O(N 2) two class problems, the result-

ing number of filters would be too large for most classification applications

today.

Finally, at the other end of the spectrum, [Jain and Karu, 1996] developed

one of the few optimised fully end-to-end classification systems. They noted

that the first layer weights in a neural network essentially play the same role

as a filter bank. Therefore, training a neural network classifier to learn the

weights is equivalent to designing optimal filters for the given classification

task. Furthermore, it is even possible to determine the number of optimal
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filters by using an iterative pruning algorithm to reduce the number of nodes

in the first layer. However the size of the filter support still has to be de-

termined a priori. A similar system, the Convolutional Neural Network, has

been developed by [LeCun et al., 1998] and shown to give outstanding results

for document recognition. Unfortunately, these methods are embedded into

the neural network framework of learning and classification and are difficult

to adapt for other methodologies.

2.1.3 Physical models and MRF methods

Physical models

The process of developing physical models to explain the behaviour of 3D

textures became much easier with the availability of the Columbia-Utrecht

database. Dana and Nayar [Dana and Nayar, 1998] were then able to exper-

imentally validate a model which predicted a texture’s intensity distribution

under varying viewpoint and illumination. The model’s parameter was the

roughness of the textured surface. Results were presented for five materials

in the database. [Dana and Nayar, 1999] were also able to predict the change

in correlation length of the textured rough surface with viewing direction.

Meanwhile, Chantler et al. broached the subject of how changes in the illumi-

nant’s direction could adversely effect a classifier’s performance unless mod-

elled and compensated for. Their research [Chantler et al., 2002b,Penirschke

et al., 2002] has provided valuable theoretical insight into how the variances

of filter responses change with the illuminant’s tilt. Later on, [Koenderink

and Pont, 2003] showed that a statistical description of surface roughness

was also sufficient to estimate the illuminant’s tilt direction from single im-

ages and thereby explained some of Chantler’s results. A generalisation of
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Koenderink and Pont’s theory is presented in chapter 7.

While these physical models of 3D textures were theoretically very ap-

pealing, they didn’t translate into practical classification algorithms because

of their restrictive assumptions – uniform albedo, Lambertian surfaces, in-

ability to model shadows, occlusions, specularities, etc. However, physical

BRDF models did lead to good results in synthesis [He et al., 1991,Ashikhmin

et al., 2000]. For example, as figure 2.4 shows, BRDF methods appear to do

a very good job of synthesising materials such as satin and velvet.

Figure 2.4: Examples of satin and velvet synthesised by [Ashikhmin et al.,
2000].

MRFs and other methods

While filter bank and wavelet methods achieved great successes all through

the nineties, their supremacy for texture synthesis has begun to be challenged

recently by MRF and image patch methods.

The trend started with [Efros and Leung, 1999,Efros and Freeman, 2001]

which had a major impact on the field of texture synthesis. Efros and Le-
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ung discarded the traditional use of filter banks and demonstrated that an

MRF (image patch) model could be used to directly synthesise textures with

complicated spatial structure. This was done without even explicitly repre-

senting the distribution of the central pixel conditioned on its neighbourhood.

A non-parametric technique was used instead. The basic premise was simple:

an image already contains all the necessary information and there is no need

to extract many features at different orientations and scales for synthesis.

To illustrate the point, suppose all the pixels in the output image have been

synthesised but one. That pixel can be synthesised by searching the input

image and determining all the central pixels whose neighbourhood matches

the current neighbourhood. The pixel value can then be set by sampling

from this distribution of central pixels.

Figure 2.5: Texture synthesis using the MRF method of [Efros and Leung,
1999] and the deterministic method of [Wei and Levoy, 2000].
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The idea is simple but revolutionised synthesis as the results obtained

were far superior to anything achieved by filter banks (see figure 2.5). The

main disadvantages of the method were that it was slow and since there

wasn’t an explicit texture model, the method could not be directly used for

classification. There were also issues concerning the choice of neighbour-

hood and the convergence properties though some consistency results were

proved by [Levina, 2002]. [Wei and Levoy, 2000] developed a variant of the

algorithm which was fast and operated at multiple scales (somewhat similar

to [De Bonet and Viola, 1998]) but which used a causal neighbourhood and

was deterministic apart from the initialization.

[Zalesny and Van Gool, 2000] also showed that extremely good synthesis

results could be obtained using the first and second order distributions of

pixel intensities directly and without any filtering. Furthermore, they gave

an iterative scheme for determining a compact MRF neighbourhood over

which these distributions should be learnt. Synthesis was carried out by

Gibbs sampling. The results are very appealing (see figure 2.6) and their

Figure 2.6: Texture synthesis using the MRF methods reported in [Gimel’farb
et al., 2004]. On the left is a collage of the different images input to the
algorithm and on the right is a collage of the synthesised results.
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algorithm has many desirable characteristics. Firstly, it yields a compact

model that can be used for analysis and classification. Secondly, the model

can be used with minimum retraining to account for 3D texture effects due

to viewpoint changes. Thirdly, the method can be shown to converge to a

desirable solution. Recently, in [Gimel’farb et al., 2004] the authors have

criticised [Zhu et al., 1998] for the use, and method of selection, of filter

banks.

While such MRF methods have taken the lead from filter banks in texture

synthesis, equivalent results have yet to be obtained for classification. The

only non filter bank based method which has so far reported good results

on the CUReT database is [Suen and Healey, 2000]. Instead of using filter

banks to extract features, Suen and Healey used correlation functions across

multiple colour bands to determine basis textures for each of the 61 mate-

rials in the CUReT database. They assumed that, for every texture image

picked from a given class, the correlation function for that image could be

represented as a linear combination of the basis texture correlation functions

of that class. A nearest neighbour classifier employing the sum of squared

differences metric was used. The number of basis images for a particular tex-

ture class also provided information about the dimensionality of that class,

i.e. the number of models needed to successfully characterise the texture for

classification purposes.

2.2 Papers in detail

In this section we review in greater detail some of the more recent literature

that is particularly relevant for texture classification. The papers that will

be covered are: [Konishi and Yuille, 2000], [Schmid, 2001], [Leung and Malik,
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2001], [Cula and Dana, 2004] and [Lazebnik et al., 2003b].

2.2.1 The algorithm of Konishi and Yuille

The aim of [Konishi and Yuille, 2000] was to use colour and texture cues

derived from local filter responses to label pixels as belonging to one of six

classes in images of outdoor scenes. The six classes were Air, Building, Car /

Edge, Road, Vegetation and Other. Information about smoothness of region

boundaries or neighbouring pixel intensities was deliberately not used so as to

demonstrate the classification power of the learnt filter response distributions.

During training, the joint PDF of the empirical probabilities of six filter

responses was learnt for each of the categories. The filter bank was formed

by combining gradient, Laplacian of Gaussian, Nitzberg (for texture) and

Gaussian (for colour) filters. The distributions were then represented as his-

tograms by quantizing the filter responses into six bins per dimension. Thus,

each of the six texture classes was modelled by a single joint distribution of

filter responses represented as a histogram with 66 bins.

Two types of experiments were conducted on the Sowerby and San Fran-

cisco databases. In the first, the entire database was used for both training

and testing. In the second, PDFs were learnt from one half of the database

while performance was measured on the other half. In each experiment, pix-

els in novel images were labelled using Bayesian classification. Both uniform

and data driven priors were tried. An upper bound on the Bayes’ error for

region classification was also reported in terms of the Chernoff information.

For the Sowerby database, the best results were obtained using colour and

texture filters with data driven priors. Uniform priors were good for find-

ing buildings and true edges. The results were broadly similar for the San

Francisco database (see figure 2.7) except for the fact that uniform priors



2.2. PAPERS IN DETAIL 45

gave much better results as there wasn’t enough reliable training data from

which to compute data driven priors. Some preliminary investigations were

also carried out comparing the statistics of the six classes between the two

datasets. Colour filters were not so useful this time as the two domains had

significant differences between images of air.

Figure 2.7: Pixel classification results on the San Francisco database
from [Konishi and Yuille, 2000].

2.2.2 The algorithm of Schmid

A two layer semi-supervised approach was proposed by [Schmid, 2001] for

image retrieval based on texture models. The first layer of the model was

similar to Konishi and Yuille’s and was formed by computing the joint PDF

of thirteen rotationally invariant filters per texture class. However, instead

of using binned histograms or a mixture model, the probability of obtaining

a particular filter response was determined by the distance to the closest

“generic descriptor” (a Gaussian with a given mean and covariance matrix).

This resulted in the model not being a true PDF as the probabilities did not

integrate to one. A second layer was then added to capture the frequency dis-

tribution of these generic descriptors so as to impose spatial constraints. This

too was represented by a set of Gaussians called “spatial-frequency descrip-
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tors”. Associated with each pair of generic and spatial-frequency descriptors

was a significance of how likely the pair was to have been generated from

a given texture class (model). Each pixel could be quantized to its closest

descriptor pair and thereby labelled with the probability of being generated

by a particular model. Unfortunately, even though priors were assumed and

a näıve Bayesian assumption was explicitly made, classification was done via

a voting mechanism (by adding all the pixel probabilities) rather than the

MAP rule.

Figure 2.8: Texture localization results from [Schmid, 2001].

Results were demonstrated on the Corel database. Roughly sixty images

from each of four classes (zebras, giraffes, cheetahs and faces) were included

with five positive and ten negative images being used to train each class.

The results for both localising significant neighbourhoods (see figure 2.8)

and image retrieval were very good.

2.2.3 The algorithm of Leung and Malik

[Leung and Malik, 2001] developed a weak classifier to specifically overcome

the problem of 3D texture classification. During learning, a stack of 20

registered images with known viewpoint and illumination were convolved

with a 48 dimensional filter bank to generate features. The registration

was necessary in order to learn how a texture varied with changing imaging

conditions. The filter responses were concatenated together to form vectors

in a 20× 48 = 960 dimensional space. These 960-vectors were then clustered



2.2. PAPERS IN DETAIL 47

using K-Means to determine exemplar filter responses called 3D textons. Just

as the frequency distribution of 2D textons had been largely sufficient for 2D

texture classification, the distribution of these 3D textons would suffice for

3D texture classification. Thus, to learn a model, all the concatenated filter

responses of a material were labelled with the texton that lay closest to them

in the 960 dimensional space. The distribution of texton frequencies then

formed a single model for a given texture class.

During classification, a stack of 20 novel images belonging to one of the

materials was presented. These novel images had to have been taken under

the same conditions as the training set and had to have the same ordering in

the stack (i.e. the viewpoint and illumination had to be known implicitly).

Given the stack, filter responses could again be generated and labelled with

the textons learnt during training. The distribution of texton frequencies

was determined and compared to the learnt models using the χ2 statistic.

Classification was performed on the basis of nearest neighbour matching.

Results were presented for 40 textures in the CUReT database. Leung

and Malik reported a remarkable accuracy rate of 95.6% when stacks of

20 images were classified from each of these 40 texture classes. They also

developed an MCMC algorithm for classifying a single image under known

imaging conditions. Training models were learnt from 4 images per class

rather than 20. However, the classification accuracy of this algorithm was

not as good as that achieved by the multiple image method. An accuracy

rate of 87% was achieved when classifying 5 test images per material.

2.2.4 The algorithm of Cula and Dana

[Cula and Dana, 2001, Cula and Dana, 2004] then extended Leung and

Malik’s framework and showed how 2D textons could themselves be used
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for uncalibrated, single image classification without compromising on perfor-

mance. They demonstrated that characterising a texture by multiple models

conditioned on viewpoint and illumination would permit a nearest neigh-

bour classifier to return comparable results but without requiring knowledge

of imaging conditions.

Thus the overall methodology was the same as Leung and Malik’s except

that all occurrences of 3D textons were replaced by 2D textons. For in-

stance, during dictionary generation, filter responses were grouped by scale,

aggregated across training images and clustered immediately without being

concatenated. Filter responses from single training images were then labelled

with these 2D textons and a texton frequency histogram was used to form

texture models. However, there were multiple models now for each texture

class sampling the viewing and illumination spheres. Nearest neighbour clas-

sification of single images was performed by matching their texton frequency

histogram to the learnt models using the χ2 statistic.

Cula and Dana also developed an algorithm for reducing the number

of models. In the first step, both training and test histograms of a class

were projected into a low dimensional space using PCA. A manifold was

fitted to the projected points and then reduced by systematically discarding

those points which least affected the shape of the manifold. The points

which were left at the end corresponded to the model images that defined

the texture. Since the models for a texture were chosen in isolation from the

other textures, Cula and Dana’s algorithm ignored the inter class variation

between textures. Therefore, the selected models were not geared specifically

towards classification.

Results were presented for 156 images selected from each of 20 classes

in the CUReT database. If 56 models were chosen for training from each
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texture then a classification rate of nearly 96% was achieved on the remaining

100 × 20 = 2000 images. However, if 8 models were chosen per class then a

rate of only 71% was achieved while classifying the remaining 148×20 = 2960

images.

2.2.5 The algorithm of Lazebnik et al.

Two main innovations distinguished [Lazebnik et al., 2003b] from previous

texture classification approaches. The first was the use of local affine in-

variant descriptors to reduce the number of models needed to characterise

a texture. The second was to learn a local set of textons per image during

training and classification as opposed to learning a universal texton dictio-

nary in the first phase of training. The Earth Mover’s Distance (EMD) was

used to compare histograms in order to cope with local texton dictionaries.

The main steps of the algorithm were the following: interest points were

detected in a given image using the Harris [Harris and Stephens, 1988] and

normalised Laplacian of Gaussian (LOG) [Lindeberg, 1998] operators. A

characteristic scale was determined for each point and the surrounding region

reduced to a canonical frame via pose normalisation. Spin images of size

20 × 20 were then used to give a fully affine invariant descriptor at each

interest point. These descriptors were then clustered agglomeratively using

the L2 distance to learn 10 – 15 textons per image. The clustering was done

separately for the two different types of interest points. The image was then

labelled using the textons and its corresponding model was determined by

the histogram of texton frequencies. The positions of the textons in spin

image space was also recorded.

During classification, the texton frequencies and positions were deter-

mined for the novel image. These were then compared to the learnt models
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using the EMD. A separate comparison was performed for the Harris inter-

est points and the LOG interest points and the values added to form a final

score for the distance between the two images. Classification was done using

nearest neighbour matching.

Results were reported on a database of 10 materials each being imaged

under 20 different viewpoints and illumination. The training set comprised

5 different images per material while the rest of the database was used for

testing. Accuracy rates of 89% were achieved despite there being significant

viewpoint and scale changes in the database. Results were also reported on

the Brodatz dataset when the images were cropped into 9 non-overlapping

regions to give a total of 999 images in all. Three images were chosen from

each of the 111 classes for training. This time a third distance based on

region shape was added to the distances computed using the two sets of

interest points. The classification accuracy was determined to be 85%.

2.3 Databases

We conclude this chapter by describing the four databases that have been

used in this thesis. The first three are the Columbia-Utrecht, San Francisco

and Microsoft Textile databases and these have been used to benchmark

the performance of classification algorithms. The fourth is the Heriot-Watt

TextureLab database on which some of the illumination direction estimation

experiments have been carried out in chapter 7.

2.3.1 The Columbia-Utrecht (CUReT) database

The Columbia-Utrecht (CUReT) database [Dana et al., 1999] contains im-

ages of 61 materials. The textures selected for inclusion in the database
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Figure 2.9: One sample of each of the materials present in the Columbia-
Utrecht (CUReT) database.

attempt to span the range of different surfaces that one might commonly

see in todays environment. The database has textures that are rough, those

which have specularities, exhibit anisotropy, are man-made and many others.

The variety of textures present in the database is shown in figure 2.9.

Each of the materials in the database has been imaged under 205 differ-

ent viewing and illumination conditions. The effects of specularities, inter-

reflections, shadowing and other surface normal variations are plainly evident

and can be seen in figures 1.12 and 1.14 where their impact is highlighted

due to varying imaging conditions. This makes the database far more chal-

lenging for a classifier than the often used Brodatz collection where all such
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effects are absent. Therefore, the CUReT database will be used in most of

the experiments performed in this thesis.

However, the raw image data by itself is not amenable for running classi-

fication experiments. Each of the images has extraneous background clutter

and images taken from some of the more extreme viewpoints have only a

very small region of texture that is visible. Thus, the following modifications

are made to the database in order to make it suitable for experimentation:

for each material present in the database, there are 118 images where the

azimuthal viewing angle is less than 60 degrees. Out of these, 92 images are

chosen for which a sufficiently large region of texture is visible across all ma-

terials. A central 200× 200 region is cropped from each of these images and

the remaining background discarded. The selected regions are converted to

grey scale and then intensity normalised to have zero mean and unit standard

deviation. Thus, no colour information is used in any of the experiments and

we make ourselves invariant to affine changes in the illuminant intensity. Fig-

Figure 2.10: The 92 images which were selected from the texture class Wood
(material number 56).
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ure 2.10 shows the 92 cropped regions of the Wood (texture number 56). The

cropped CUReT database has a total of 61 × 92 = 5612 images. These are

evenly split into two disjoint sets of 2806 images each, one for training and

the other for testing. Most of the results reported in the following chapters

will be based on these sets.

While the CUReT database has now become a benchmark and is widely

used to assess classification performance, it also has some limitations. These

are mainly to do with the way the images have been photographed and the

choice of textures. For the former, there is no significant scale change for

most of the materials and very limited in-plane rotation. As all the images

have been taken in the lab, the illumination has been controlled to a very

large extent as well. For example, even though the illuminant’s direction

varies a lot, the illuminant’s intensity has been kept relatively constant. Fur-

thermore, the use of multiple and diffuse illuminants has not been explored.

With regard to choice of texture, the most serious drawback is that multiple

instances of the same texture are present for only a few of the materials,

so intra-class variation cannot be thoroughly investigated. Hence, it is diffi-

cult to make generalisations. Nevertheless, it is still one of the largest and

toughest databases for a texture classifier to deal with and is therefore used

extensively in this research.

2.3.2 The San Francisco database

The San Francisco database has 37 images of outdoor scenes taken on the

streets of San Francisco. It has been segmented by hand into 6 classes:

Air, Building, Car, Road, Vegetation and Trunk. Note that this is slightly

different from the description reported in [Konishi and Yuille, 2000] where

only 35 images were used and the classes were: Air, Building, Car, Road,
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Figure 2.11: Sample images from the San Francisco database.

Vegetation and Other. Figure 2.11 shows some sample images from the

database. The images all have resolution 640× 480.

As can be seen, the database is easy to classify on the basis of colour

alone – the sky is always blue, the road mostly black and the vegetation

green. Therefore, in this thesis, the images are converted to gray scale to

make sure classification is done only on the basis of texture and not of colour.

Also, when the database is used in chapter 6, each image patch is normalised

by subtracting off the median value and dividing by the standard deviation.

This further ensures that classification is actually carried out on the basis

of textural information and not just intensity differences (i.e. a bright sky

versus a dark road).

The database is challenging because individual texture regions can be
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small and irregularly shaped. The images of urban scenes are also quite

varied. However, the three main classes, Air, Road and Vegetation, tend

not to change all that much from image to image (the database does not

include any images taken at night or under artifical illumination). The other

shortcoming of the database is its small size.

2.3.3 The Microsoft Textile database

The Microsoft Textile database [Savarese and Criminsi, 2004] has 16 folded

textures with 20 images available of each taken under diffuse artifical lighting.

This is one of the first attempts at studying non-planar textures and therefore

represents an important step in the evolution of the texture analysis problem.

Figure 2.12: Textures present in the Microsoft Textile database.

The images all have resolution 1024 × 768. The foreground texture has

been segmented from the background using GrabCut [Rother et al., 2004].

The impact of non-Lambertian effects is plainly visible as in the Columbia-
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Figure 2.13: Images of Nylon from the Microsoft Textile database.

Utrecht database. Figure 2.13 shows some sample images of Nylon. The

variation in pose and the deformations of the textured surface make it an

interesting database to analyse. Furthermore, additional data is available

which has been imaged under large variations in illumination conditions.

2.3.4 The Heriot-Watt TextureLab database

The Heriot-Watt TextureLab database [Wu and Chantler, 2003] was devel-

oped to study the photometric properties of nearly Lambertian materials.

The goal was to investigate how such 3D textures vary with changing illumi-

nation and surface rotation.

There are 30 textures in the database and each has been imaged from a
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fixed viewpoint. The illuminant’s elevation is also fixed at ν = 45◦ but the

azimuth varies between ψ = 0◦ and ψ = 315◦ in steps of 45◦. Each texture

has also been imaged for seven different values of surface rotation from 0◦

to 180◦ in steps of 30◦. Thus, there are 56 images of each material all at

resolution 512 × 512. The textures occupy the entire image so there is no

need for segmentation.

Since the images are all registered this is an excellent database for con-

ducting photometric stereo analysis of the included materials (the light source

positions are known as well). While there is rotation present in the database,

the samples have all been imaged at the same scale unfortunately. The

Figure 2.14: Materials present in the Heriot-Watt TextureLab database.
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slant angle of the illuminant is also fixed and therefore the variability in the

database is limited. Therefore, in this thesis, the database is only used for

experiments on determining the illuminant’s azimuthal direction.



Chapter 3

A Filter Bank Based Approach

To Texture Classification

This chapter focuses on building a framework in which filter banks are used

to extract features for texture classification. The use of filter banks is moti-

vated with a discussion on the type of information extracted by a filter and its

representation. The particular aspects of interest are the dimensionality and

invariance of filter responses. We explore designing low dimensional, maxi-

mum response filter banks which are rotationally invariant but nevertheless

able to extract rich features from textured images.

To tackle single image classification, a statistical approach is developed

where textures are modelled by the joint probability distribution of filter

responses. This distribution is represented by the frequency histogram of

filter response cluster centres (textons). A nearest neighbour classifier is

used and performance is assessed on the materials in the Columbia-Utrecht

database. Empirical results are presented for the different types of filter

banks considered and the advantages of using low dimensional, rotationally

invariant features discussed.

59
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3.1 Introduction

In this chapter, a statistical approach to single image texture classification

is formulated based on extracting features via convolution with a filter bank

followed by nearest neighbour matching. This is motivated by the remarkable

successes achieved by recent filter bank based classification algorithms [Cula

and Dana, 2004, Hayman et al., 2004, Konishi and Yuille, 2000, Leung and

Malik, 2001,Schmid, 2001].

Two main issues crop up when designing or selecting a filter bank for

classification. The first is about which filters should be included and here

one runs into the well known selectivity (discriminability) versus invariance

dilemma. On the one hand, it is tempting to choose filters which are able

to discriminate very well between textures, i.e. the filter responses should

change considerably when going from one class to another. On the other

hand, it is also desirable for the filters to be invariant to imaging conditions,

i.e. the filter responses should stay the same when the texture class is fixed

but the surface or camera rotates or the illumination or viewpoint changes.

Attaining both goals is well nigh impossible and, conventionally, filter banks

have either been designed to be very discriminative (by including filters at

many orientations and scales [Leung and Malik, 2001]) but have no invari-

ance or have complete rotational symmetry [Schmid, 2001], and thereby be

invariant but not effective at picking out anisotropic features.

The second issue which must be confronted is the dimensionality of the

filter response space. It has traditionally been thought that many filters

at different orientations and scales are necessary to extract rich features.

However,a low dimensional filter bank is preferable because class distributions

must be learnt from a finite, and often quite small, amount of training data.

Thus, the curse of dimensionality forces a compromise between the quality
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of features extracted and the number of filters used.

We propose to overcome both these problems by introducing reduced

sets of low dimensional, rotationally invariant filters based on taking the

maximal response. Thus, the two primary objectives of this chapter are (a) to

develop a statistical framework for classifying materials on the basis of their

appearance in single textured images obtained under unknown viewpoint and

illumination and (b) to design a filter bank which is capable of detecting and

extracting good features from a diverse set of classes but which is nevertheless

low dimensional and rotationally invariant.

In our proposed framework, textures are modelled by the joint distribu-

tion of filter responses. This distribution is represented by texton (cluster

centre) frequencies, and textons and texture models are learnt from training

images. Classification of a novel image proceeds by mapping the image to a

texton distribution and comparing this distribution to the learnt models us-

ing the chi-square statistic. This enables the classification of materials from

single images while representing each texture class by a small set of models.

The chapter is organised as follows: in section 3.2, we study feature ex-

traction using filter banks and discuss how such features can be used for clas-

sification. Then, the basic VZ classification algorithm is developed within a

rotationally invariant framework in section 3.3. The clustering, learning and

classification stages of the algorithm are described, and the performance of

different filter sets is compared. The sets include the rotationally invariant fil-

ter bank of Schmid [Schmid, 2001], the discriminative filter bank of Leung and

Malik [Leung and Malik, 2001], and the rotationally invariant sets developed

here based on taking the maximal filter responses. Performance is assessed

by classifying all the materials present in the Columbia-Utrecht (CUReT)

database [Dana et al., 1999] Preliminary versions of these results appeared
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in [Varma and Zisserman, 2002a, Varma and Zisserman, 2002b, Varma and

Zisserman, 2005].

3.2 Filter response features

Convolution with a filter bank can be viewed in two ways. It can either

be seen as extracting certain frequencies from the image signal or, more

appropriately in our case, as detecting and matching the filter pattern in the

image. In this match filter paradigm, the strength of the filter response at

an image patch is an indicator of the similarity of the patch to the filter.

Assuming intensity mean normalisation, the filter responds most strongly to

patches which are scalar multiples of itself and responds least strongly to

patches which are orthogonal to it (for which the filter response is zero).

This is perhaps best seen by noting that filtering is identical to taking the

dot product and therefore convolving an image with a filter is equivalent to

projecting all the patches in the image onto the vector representation of the

filter. Thus,

Image ? Filter ≡ F1×Ns
INs×Np

(3.1)

where I is a matrix of all the overlapping patches in the image and has

dimensions support size of filter (Ns) times number of patches (Np), F is

the vector representation of the filter obtained by row re-ordering and ?

represents convolution.

The general form of (3.1) also shows how a set of filters can be designed

to select and enhance information present in an image. If it were known

which features were good for discrimination then a bank of filters could be

designed to match those features. Research on pre-attentive texture discrim-

ination and psychophysics has concluded that textures can be characterised
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by counting the frequency of occurrence of basic texture primitives (textons)

such as bars, edges, spots and rings [Fogel and Sagi, 1989, Malik and Per-

ona, 1990, Leung and Malik, 2001]. Thus, filters designed to detect such

features at multiple scales and orientations can be expected to do quite well.

Such match filter banks are often implemented using families of Gabors or

Gaussians and their derivatives.

Figure 3.1 illustrates how such filters can be used to distinguish between

two texture classes. The Laplacian of Gaussian (LOG) filter can be used to

“count” the number of holes or spots in a textured image. Similarly, the first
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Figure 3.1: The images in (a) are convolved with a Laplacian of Gaussian
(LOG) filter and the responses are shown in (b). Notice how the filter reacts
strongly to the holes and spots in the sponge but almost not at all to the
edges of the ribbed paper. Similarly, (c) is the response of the images to
a horizontal edge filter (implemented as the first derivative of a Gaussian).
Again, note that the filter has a strong preference for edges over spots. The
frequency distributions of the filters (solid blue for the LOG and dashed red
for the edge) are shown in (d) and can be used to distinguish between the
two classes.
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derivative of a Gaussian can be used to count the number of edges. As is

shown by the frequency distribution, either of these statistics is sufficient for

distinguishing between the two texture classes. For example, the classifica-

tion rule might be that if there are more than fifty holes detected then the

image must be that of sponge otherwise it must be ribbed paper. Or, that if

there are more than a hundred horizontal edges detected then the image is of

ribbed paper otherwise of sponge. Thus, it is possible to classify textures on

the basis of just the thresholded frequency response of well selected filters.

As one moves to more complex situations with many texture classes such
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Figure 3.2: All three joint distributions have identical marginals. For classifi-
cation purposes, it is therefore preferable to store the joint PDF rather than
the marginals. In fact, this is often necessary when there are many texture
classes and there is a significant overlap amongst the marginals.
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simple classification rules no longer work. While the frequency distribution

of filter responses still contains information sufficient for classification, we

must now look at the joint distribution of responses rather than look at

filter marginals singly. This is illustrated in figure 3.2. Obviously, care

must be taken as to how this joint probability distribution function (PDF) is

represented as different representations have different advantages and lead to

different classification algorithms. The issue of representation is explored in

detail in chapter 5. In this chapter, we will represent the distribution using

textons.

Textons can be thought of as the basic building blocks for a given texture,

i.e. the texture can be thought to have been generated by the repeated over-

laying (either stochastic or periodic) of its textons. For example, the sponge

texture shown in figure 3.3, can be thought of as being generated by a hand-

ful of textons, some modelling the brown background while others represent

the different types of holes present. In [Leung and Malik, 2001], Leung and

Malik made an important innovations and gave an operational definition of

Image Filter responses Texton frequencies

Figure 3.3: A texture can be thought of as being generated by the repeated
overlaying of its textons. For instance, the sponge texture can be thought
of as being generated by first tiling the brown background textons and then
overlaying the hole textons. The textons can be automatically determined by
the cluster centres in filter response space. Texton frequencies then represent
a count of how many basic texton primitives of each type are needed to
characterise a texture.
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a texton based on filters and clustering. They defined textons to be cluster

centres in filter response space. The intuition being that most textures are

generated by a finite, and small, texton vocabulary and that all other fil-

ter responses are just noisy variations of these textons (see figure 3.3). The

plausibility of the hypothesis is illustrated in figure 1.7 which shows three

textures artificially synthesised using a small vocabulary of textons. Note

that the synthesised textures are almost indistinguishable from the originals.

3.3 The VZ algorithm

In this section, we develop the basic VZ algorithm for texture classification

using features extracted by filter banks. As is customary amongst weak
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Figure 3.4: Learning stage I (generating the texton dictionary): Multiple,
unregistered images from the training set of a particular texture class are
convolved with a filter bank. The resultant filter responses are aggregated
and clustered into textons using the K-Means algorithm. Textons from dif-
ferent texture classes are combined to form the texton dictionary.
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classifiers, the algorithm is divided into a learning stage and a classification

stage.

The first part of the learning stage consists of generating a texton dic-

tionary. This is done, in turn, for every texture class by choosing certain

training images and convolving each of them individually with a filter bank

to generate filter responses (see figure 3.4). The responses are aggregated to-

gether and exemplars (textons) chosen via K-Means clustering [Duda et al.,

2001]. Finally, all the textons learnt from all the different classes are brought

together to form a single texton dictionary.

The choice of clustering each of the textures separately is made so that

important texton primitives can be learnt from each class. If all the textures

had been clustered together to learn the dictionary in one shot, only those
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Figure 3.5: Learning stage II (model generation): Given a training image,
its corresponding model is generated by first convolving it with a filter bank
and then labelling each filter response with the texton which lies closest to
it in filter response space. The histogram of textons, i.e. the frequency with
which each texton occurs in the labelling, forms the model corresponding to
the image.
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textons would be selected which occur frequently across many classes rather

than those textons which are unique to particular textures. It is also neces-

sary to use multiple images from each class while generating the dictionary

so as to learn the different types of textons that might be required to char-

acterise a texture as viewpoint and illumination vary. However. it is not

necessary for these images to be registered in order to learn the variation.

The next step is to learn models to characterise the various texture classes.

Models are generated by first taking certain selected training images and

labelling each of their filter responses with the texton that lies closest to it

in filter response space. Thus each of the training images is vector quantized

1: function f̄=NormaliseResponses(f)
2: % f - the input filter responses generated via convolution
3: % f̄ - the output filter responses normalised according to (3.3)
4:

5: for each x ∈ {(x, y)} do
6: L(x)← ‖f(x)‖2
7: f̄(x)← f(x) [log (1 + L(x)/0.03)] /L(x)
8: end
9: return f̄

10: end
11:

12: function F̄=NormaliseFilters(F)
13: % F - the input filter bank
14: % F̄ - the output filter bank made mean zero and L1 normalised
15:

16: for i = 1 to NFilters do
17: F̄i ← Fi − µFi

% Make each filter mean zero
18: F̄i ← F̄i / ‖F̄i‖1 % L1 Normalise
19: end
20: return F̄
21: end

Algorithm 3.1: Pseudo code for normalising filter banks and filter responses
during learning and classification. More details of the normalisation proce-
dures are given in subsection 3.3.2.
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into a texton map. The histogram of texton frequencies of a map is then

used to form a model corresponding to the particular training images (see

figure 3.5). Algorithms 3.1 and 3.2 summarises the functions for texton

1: function T=LearnTextons(T ,F, K)
2: % T - the subset of training images from which textons are to be learnt
3: % F - the selected filter bank
4: % K - the number of textons to be learnt from each class
5: % T - the resultant texton dictionary
6:

7: T← [ ] % Set T to the empty matrix
8: I← (I− µI)/σI ∀I ∈ T % Normalise images
9: F← NormaliseFilters(F) % Normalise filter bank

10: for i = 1 to NClasses do
11: F ← { f(x) | f = NormaliseResponses(I?F)∧I ∈ T ∧Class(I) = i }
12: µ← KMeans(F , K) % Learn K textons from each class
13: T← Concatenate(T,µ) % Append textons to dictionary
14: end
15: return T
16: end
17:

18: function M=LearnModels(T ,F,T)
19: % T - the subset of training images from which models are to be learnt
20: % F - the selected (and normalised) filter bank
21: % T - the texton dictionary generated during the first stage of learning
22: % M - the learnt models
23:

24: F← NormaliseFilters(F) % Normalise filter bank
25: for each I ∈ T do
26: I← (I− µI)/σI % Normalise image
27: f ← Normalise(I ? F) % Generate normalised filter responses
28: t(x)← argmin i ||f(x)−Ti||2 % Generate texton map
29: MIi ←

∑

x
δ(t(x)− i) ∀1 ≤ i ≤ #T

30: MIi ←MIi/
∑

j MIj % Compute normalised texton histogram
31: end
32: return M
33: end

Algorithm 3.2: An algorithmic description of the functions for texton dic-
tionary generation and model generation that are used during learning.
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dictionary generation and model generation that are used during learning.

In our framework, a texture is characterised by multiple models which ac-

count for the inter class variation due to imaging conditions. There are two

important advantages in using this formulation. Firstly, it sets the ground

for the classification of single novel images as opposed to the multiple image

classification framework of [Leung and Malik, 2001]. Secondly, allowing for

multiple models per texture class ensures that the PDF of filter responses is

not “mixed” or “confused” by the variations in imaging conditions as would

have happened if only a single model had been used per class [Konishi and

Yuille, 2000,Schmid, 2001]. Though, it should be noted that as Bayes’ theo-

rem tells us, having a sinlge model would be sufficient if we were attempting

only individual pixel classification (as is the case in [Konishi and Yuille,

2000]) rather than entire image classification.

In the classification stage, a similar procedure is followed to build the his-
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Figure 3.6: Classification stage: A novel image is classified by forming its
histogram and then using a nearest neighbour classifier to pick the closest
model to it (in the χ2 sense). The novel image is declared as belonging to
the texture class of the closest model.



3.3. THE VZ ALGORITHM 71

togram corresponding to the texton map of the novel image. This histogram

is then compared with the models learnt during training and is classified on

the basis of the comparison (see figure 3.6). A nearest neighbour classifier is

used and the χ2 statistic [Press et al., 1992] defined as

χ2(PModel, PNovel) =
∑

i

(PModeli − PNoveli)2

PModeli + PNoveli
(3.2)

employed to measure distances. Algorithm 3.3 summarises the classification

function in pseudo code. More details, both of the algorithmic steps as well

as the filter banks used, are given in the following subsections.

1: function C=NNClassify(I,F,T,M)
2: % I - the novel image to be classified
3: % F - the selected filter bank
4: % T - the texton dictionary generated during learning
5: % M - the models characterising the various texture classes
6: % C - the class allocated to the novel image
7:

8: I← (I− µI)/σI % Normalise image
9: F← NormaliseFilters(F) % Normalise filter bank

10: f ← NormaliseResponses(I ? F) % Get normalised filter responses
11: t(x)← argmin i ||f(x)−Ti||2 % Generate texton map
12: Ni ←

∑

x
δ(t(x)− i) ∀ 1 ≤ i ≤ #T

13: Ni ← Ni/
∑

j Nj % Compute normalised histogram

14: M∗ ← argmin
MI

χ2(MI ,N) % 1NN classification
15: C ← ClassOfModel(M∗)
16: return C
17: end

Algorithm 3.3: Pseudo code for the classification of a novel image using
nearest neighbour matching of the χ2 statistic between model and novel
histograms.
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3.3.1 Rotationally invariant filters

In this subsection, we introduce the rotationally invariant filter sets that are

used in the VZ algorithm. We also describe two other filter sets that will be

used in classification comparisons in subsection 3.3.4. The aspects of interest

are the dimension of the filter space, and whether the filter set is rotationally

invariant or not.

The filter sets that will be compared are: those of Leung and Malik [Leung

and Malik, 2001] which are not rotationally invariant; those of Schmid [Schmid,

2001] which are; and reduced sets of filters based on taking the maximum

response (which are again rotationally invariant). Parameters of the vari-

ous filter sets are listed in table 3.1. Filter sets will be assessed by their

classification performance using textons clustered in their response spaces.

Filters Dim. Parameters

S 13
13 Gabor like filters with (σ, τ) = {(2,1), (4,1), (4,2),
(6,1), (6,2), (6,3), (8,1), (8,2), (8,3), (10,1), (10,2),
(10,3) and (10,4)}

LMS 48

18 Edge and 18 Bar filters with

- Scales (σx, σy) = {(1, 3), (
√

2, 3
√

2), (2, 6)}
- Orientations θ = {0, 30, 60, 90, 120, 150}

4 Gaussian filters at scales σ = {1,
√

2, 2, 2
√

2}
8 LOG filters at scales σ and 3σ

LML 48

18 Edge and 18 Bar filters with

- Scales (σx, σy) = {(
√

2, 3
√

2), (2, 6), (2
√

2, 6
√

2)}
- Orientations θ = {0, 30, 60, 90, 120, 150}

4 Gaussian filters at scales σ = {
√

2, 2, 2
√

2, 4}
8 LOG filters at scales σ and 3σ

BFS 38

18 Edge and 18 Bar filters with
- Scales (σx, σy) = {(1, 3), (2, 6), (4, 12)}
- Orientations θ = {0, 30, 60, 90, 120, 150}

A Gaussian filter at scale σ = 10
A LOG filter at scale σ = 10

Table 3.1: The parameters of the various filter banks.
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The Leung-Malik (LM) set

The LM set is a multi scale, multi orientation filter bank with 48 filters. It

consists of first and second derivatives of Gaussians at 6 orientations and 3

scales making a total of 36; 8 Laplacian of Gaussian filters; and 4 Gaussians.

The filters are shown in figure 3.7 and their parameters are listed in table 3.1.

We consider two versions of the LM filter bank. In LM Small (LMS), the

filters occur at basic scales σ = {1,
√

2, 2, 2
√

2}. For LM Large (LML), the

filters occur at the larger scales σ = {
√

2, 2, 2
√

2, 4}.

Figure 3.7: The LM filter bank has a mix of edge, bar and spot filters at
multiple scales and orientations. It has a total of 48 filters - 2 Gaussian
derivative filters at 6 orientations and 3 scales, 8 Laplacian of Gaussian filters
and 4 Gaussian filters.

The Schmid (S) set

The S set consists of 13 rotationally invariant filters of the form

F (r, σ, τ) = F0(σ, τ) + cos
(πτr

σ

)

e−
r2

2σ2

where F0(σ, τ) is added to obtain a zero DC component. The filters are shown

in figure 3.8 and table 3.1 lists the different values that the (σ, τ) parameters

can take. As can be seen all the filters have rotational symmetry.
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Figure 3.8: The S filter bank is rotationally invariant and has 13 isotropic,
“Gabor-like” filters.

The Maximum Response (MR) sets

Each of the reduced MR sets is derived from a common Base Filter Set (BFS)

which consists of 38 filters and is very similar to LM. The filters included

in BFS are a Gaussian and a Laplacian of Gaussian both at a single scale

(these filters have rotational symmetry), as well as anisotropic edge and bar

filters at 3 scales and 6 orientations – just as in LM. The filter bank is shown

in figure 3.9.

To achieve rotational invariance, we derive the Maximum Response 8

(MR8) filter bank from BFS by recording only the maximum filter response

across all orientations for the two anisotropic filters. Measuring only the

maximum response across orientations reduces the number of responses from

38 (6 orientations at 3 scales for 2 oriented filters, plus 2 isotropic) to 8 (3

scales for 2 filters, plus 2 isotropic). Thus, the MR8 filter bank consists of

38 filters but only 8 filter responses.

The dimensionality of the filter response space can be reduced even fur-

ther by taking the maximum over both scales and orientations. This leads

to the MRS4 filter bank. In it, each of the 4 different types of filters con-

tributes only a single response. As in MR8, the responses of the two isotropic

filters (Gaussian and LOG) are recorded directly. However, for each of the
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Figure 3.9: The MR filter sets: The BFS filter bank consists of 2 anisotropic
filters, an edge and a bar, at 6 orientations and 3 scales and 2 rotationally
symmetric ones, a Gaussian and a Laplacian of Gaussian. For the rotationally
invariant MR8 filter bank, only 8 responses are recorded by taking, at each
scale, the maximal response of the anisotropic filters across all orientations.
Essentially, this is the maximum response of each row of the filter bank above.
For the MRS4 filter bank, the maximum is taken across both scales and
orientations for each type of filter. This corresponds to taking one maximum
over the top three rows, another over the next three and one each for the
bottom two rows.

anisotropic filters, the maximum response is taken over both orientations and

scale again giving a single response per filter type. With proper normalisa-

tion, MRS4 is both rotation and scale invariant [Lindeberg, 1998].

Finally, we also consider the MR4 filter bank where we only look at filters

at a single scale. Thus, the MR4 filter bank is a subset of the MR8 filter bank
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where the oriented edge and bar filters occur at a single fixed scale (σx = 4,

σy = 12).

The motivation for introducing these MR filters sets is twofold. The

first is to overcome the limitations of traditional rotationally invariant filters

which do not respond strongly to oriented image patches and thus do not

provide good features for anisotropic textures. Since the MR sets contain

both isotropic filters as well as anisotropic filters at multiple orientations they

are expected to generate good features for all types of textures. Additionally,

unlike traditional rotationally invariant filters, the MR sets are also able to

record the angle of maximum response. This enables us to compute higher

order co-occurrence statistics on orientation and such statistics may prove

useful in discriminating textures which appear to be very similar. We return

to this in the next chapter in subsection 4.2.2.

The second motivation arises out of a concern about the dimensional-

ity of the filter response space. Quite apart from the extra processing and

computational costs involved, the higher the dimensionality, the harder the

clustering problem. In general, not only does the number of cluster centres

needed to cover the space rise dramatically, so does the amount of training

data required to reliably estimate each cluster centre. This is mitigated to

some extent by the fact that texture features are sparse and can lie in lower

dimensional subspaces. However, the presence of noise and the difficulty in

finding and projecting onto these lower dimensional subspaces can counter

these factors. Therefore, it is expected that the MR filter banks should

generate more significant textons not only because of improved clustering

in a lower dimensional space but also because rotated features are correctly

mapped to the same texton.
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3.3.2 Pre-processing

The following pre-processing steps are applied before going ahead with any

learning or classification. First, before convolving with any of the filter banks,

a central 200 × 200 texture region is cropped and retained from each of the

images selected from the CUReT database and the extraneous background

discarded. All processing is done on these cropped regions and they are

converted to grey scale and intensity normalised to have zero mean and unit

standard deviation. This normalisation gives invariance to global (i.e. across

the entire region) affine transformations in the illumination intensity.

Second, within each bank, every filter is made mean zero. It is also L1

normalised so that the responses of all filters lie roughly in the same range.

In more detail, every filter Fi is divided by ‖Fi‖1 so that the filter has unit

L1 norm. This helps vector quantization, when using Euclidean distances,

as the scaling for each of the filter response axes becomes the same [Malik

et al., 2001]. Note that dividing by ‖Fi‖1 also scale normalises [Lindeberg,

1998] the Gaussians (and their derivatives) used in the filter banks.

Third, following [Malik et al., 2001] and motivated by Weber’s law, the

filter response at each pixel x is (contrast) normalised as

F(x)← F(x) [log (1 + L(x)/0.03)] /L(x) (3.3)

where L(x) = ‖F(x)‖2 is the magnitude of the filter response vector at that

pixel. This was emperically determined to lead to better classification results.

3.3.3 Textons by clustering

We now consider clustering the filter responses in order to generate a texton

dictionary. This dictionary will subsequently be used to define texture models
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based on texton frequencies learnt from training images.

For each filter set, we adopt the following procedure for computing a

texton dictionary: A selection of 13 images is chosen randomly for each

texture (these images sample the variations in illumination and viewpoint),

the filter responses over all these images are aggregated, and 10 texton cluster

centres computed using the standard K-Means algorithm [Duda et al., 2001].

The learnt textons for each texture are then collected into a single dictionary.

For example, if there are 5 texture classes then the dictionary will contain

(a) S Textons

(b) LM Textons

(c) MR8 Textons

Figure 3.10: The image patches (recovered by the pseudo inverse) corre-
sponding to the first 100 textons learnt from 20 training textures using 13
images per texture: (a) S textons. (b) LM textons. (c) MR8 textons. Note
that the LM textons are not rotationally symmetric.
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50 textons. Examples of the textons for the S, LMS and MR8 filter banks

are shown in figure 3.10.

Our clustering task is considerably simpler than that of Leung and Malik,

and Cula and Dana (who use essentially the same filter bank) as we are able to

cluster in low, 4 and 8, dimensional spaces. This compares to 13 dimensional

for S, and 48 dimensional for LM (we are not considering 3D textons at this

point where the dimensionality is 960).

Concerning the rotation properties of the LM and MR textons, consider a

texture and an (in plane) rotated version of the same texture. Corresponding

features in the original and the rotated texture will map to the same point in

MR filter space, but to different points in LM. It is therefore expected that

more significant clusters will be obtained in the rotationally invariant case.

Secondly, for the LM filter set, which is not rotationally invariant, it would

be expected that its textons can not classify a rotated version of a texture

unless the rotated version is included in the training set (both of these points

Image LM Model MR Model LM Textons MR Textons

Figure 3.11: Classification of rotated textures. Two rotated images of Ribbed
Paper have been taken from the CUReT database (texture numbers 38 and
38B) and their corresponding models generated using the LMS and MR4
filter banks. Note that the MR models are very similar while the LM models
are not. Therefore, in the case of MR, it is expected that by having one image
present in the training set the other will be classified correctly. However, this
will not hold true for LM as its models are quite dissimilar. Also note, that
since the LM filter bank is not rotationally invariant, the textons that are
generated by the two images are rotated copies of each other while, for MR,
they are essentially the same.
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are demonstrated in figure 3.11).

This establishes that there is an advantage in being rotationally invariant

as rotated versions of the same texture can be represented by one histogram,

while several are required for the LM textons. However, there is still the

possibility that rotation invariance has the disadvantage that two different

textures (which are not rotationally related) have the same histogram. We

address this point next, where we compare classification rates over a variety

of textures.

3.3.4 Experimental setup and classification results

In this subsection, the performance of the basic VZ classification algorithm

is assessed on the Columbia-Utrecht database (the database is described in

detail in subsection 2.3.1 of the literature review). Three experiments are

performed to compare texture classification rates over 92 images for each of

20, 40 and 61 texture classes respectively. The first experiment, where images

from 20 textures are classified, corresponds to the setup employed by Cula

and Dana [Cula and Dana, 2004]. The second experiment, where 40 textures

are classified, is modelled on the setup of Leung and Malik [Leung and Malik,

2001]. In the third experiment, all 61 textures present in the Columbia-

Utrecht database are classified. The 92 images are selected as follows: for

each texture in the database, there are 118 images where the viewing angle

θv is less than 60 degrees. Out of these, only those 92 are chosen for which

a sufficiently large region could be cropped across all texture classes.

Each experiment consists of three stages: texton dictionary generation;

model generation, where texture models are learnt from training images; and,

classification of novel images. The 92 images for each texture are partitioned

into two, disjoint sets. Images in the first (training) set are used for dictio-
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nary and model generation, classification accuracy is only assessed on the 46

images for each texture in the second (test) set.

A model is generated from each of the 46 training images per texture by

vector quantizing the image’s filter responses into textons and then building

the corresponding texton frequency distribution (histogram). Thus, each

texture class is represented by a set of 46 histograms. An image from the

test set is classified by forming its histogram and then choosing the closest

model histogram learnt from the training set. The distance function used to

define closest is the χ2 statistic.

In all three experiments we follow both [Cula and Dana, 2004] and [Leung

and Malik, 2001] and learn the texton dictionary from 20 textures (using the

procedure outlined before in subsection 3.3.3). The particular textures used

are specified in figure 7 of [Leung and Malik, 2001].

In the first experiment, 20 novel textures are chosen (see figure 19a

in [Cula and Dana, 2004] for a list of the novel textures) and 20× 46 = 920

novel images are classified in all. In the second experiment, the 40 textures

specified in figure 7 of [Leung and Malik, 2001] are chosen and a total of

40 × 46 = 1840 novel images classified. Finally, in the third experiment, all

61 textures in the Columbia-Utrecht database are classified with there being

a total of 61 × 46 = 2806 test images. The results for all three experiments

are presented in table 3.2.

Discussion

Two points are notable in these results. First, the MR8 filter bank achieves

similar performance to LML and BFS. It incorrectly classifies 2 and 5 more

images than LML and BFS respectively when 20 textures are present and

correctly classifies 9 more images when there are 61 textures (note, however,
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# of texture classes
Filters Dim. Inv. 20 40 61
S 13 R 96.30% 95.27% 94.62%
LMS 48 N 96.08% 93.75% 93.44%
LML 48 N 98.04% 96.47% 96.08%
BFS 38 N 98.37% 96.36% 96.08%
MR8 08 R 97.83% 96.41% 96.40%
MR4 04 R 94.13% 92.07% 90.73%
MRS4 04 SR 96.41% 94.08% 93.26%

Table 3.2: Comparison of the classification rates for varying number of tex-
ture classes for each of the seven filter sets. In all cases, the dictionary used
has 200 textons learnt from 20 textures and there are 46 models per texture
class. Key: R - Rotational invariance, S - Scale invariance, N - No invariance.

that none of these differences is statistically significant). This indicates that

a rotationally invariant descriptor is not a disadvantage and that salient

information for classification is not being lost. The reason why the non

invariant filters LML and BFS do so well is because there is no significant

in-plane rotation within the textures of the CUReT database. This is easily

seen if we repeat the first experiment (where there are 20 classes) keeping all

the training images but rotating all the test images by 90◦. In this case, the

performance of the LML and BFS filter banks drop dramatically to 33.70%

and 26.85% respectively, but the performance of MR8 remains unaffected at

97.83%. Second, the fact that MR8 does better than S is also evidence that

it is detecting better features, for both isotropic and anisotropic textures,

and that clustering in a lower dimensional space can be advantageous. The

MR4 filter bank loses out because it only contains filters at a single scale and

hence can’t extract such rich features (MRS4 is a more viable alternative).

What is also very encouraging with these results is that as the number of

texture classes increases there is only a small decrease in the accuracy of the

classifier.
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3.4 Conclusions

In this chapter, filter banks have been used to tackle the problem of texture

classification. The basic VZ algorithm was introduced and it was demon-

strated how single images could be classified without requiring any infor-

mation about their imaging conditions. This is a substantial improvement

over the previous work of Leung and Malik which required multiple images

obtained under known conditions.

The use of filter banks was motivated both by arguments from invariance

as well as those from feature extraction which claim that a classifier must

extract features at many different scales and orientations to be successful.

While it is impossible to find one single filter bank which will completely

achieve both goals of invariance as well as discriminability, we introduced the

low dimensional MR sets which lead to an effective compromise. The sets

include anisotropic filters at multiple orientations and scales, which provide

discriminability, but are nevertheless invariant to image rotations and also

image rescalings (for MRS4). The MR sets have a further advantage over

traditional forms of invariant filter banks as they are able to record the angle

(or scale) of maximum response and use that information if necessary for

classification.

Empirical results of classifying the various textures in the CUReT database

were presented to validate the performance of the MR sets. In each experi-

ment, the MR8 filters proved to be superior to S, the traditional rotationally

invariant filter bank included in the comparisons. MR8’s performance was

also as good as LML or BFS, the non rotationally invariant filters, when no

significant rotations were present in the included texture classes. However,

MR8’s superiority over LML and BFS was clearly brought out as soon as the

camera was rotated. The set’s performance remained unaffected at over 95%
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while the performance of the non invariant filter banks plummeted to around

30%. Unfortunately, the performance of MRS4 was not as good because the

scale parameter is, by and large, fixed for the images present in the CUReT

database. However, as will be shown in the next chapter, the comparative

performance of MRS4 improves when classifying using only a few models

which have to cope with larger variability.



Chapter 4

Model Reduction and

Algorithmic Variations

Chapter 3 introduced the basic VZ algorithm for single image texture clas-

sification using filter banks. In this chapter, we study various extensions of

the VZ algorithm. The objective is to see how robust the algorithm is with

change in parameters and how it is affected by different modifications. The

three questions that are particularly of interest are (a) how can the number

of models needed during classification be reduced and how does this affect

performance? (b) what is the effect of changing the texton dictionary and

the training image set? and (c) how valid is the hypothesis that first order

statistics are sufficient for texture classification?

The first question is tackled in section 4.1 where we investigate meth-

ods which minimise the number of models used to characterise the various

texture classes. The K-Medoid and Greedy algorithms are introduced and re-

sults compared with those of [Cula and Dana, 2004,Leung and Malik, 2001].

Section 4.2 then deals with the effect of choice of texton dictionary and train-

ing images upon the classifier. A benchmark rate is defined and size of the

85
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texton dictionary and number of training images varied to investigate the im-

pact on classification performance. Finally, the issue of whether information

is lost by using only the first order statistics of rotationally invariant filter

responses is discussed. A method for reliably measuring the relative orien-

tation co-occurrence of textons is presented in order to incorporate second

order statistics into the classification scheme.

4.1 Reducing the number of models

In this section, our objective is to reduce the number of training models

required to characterise each texture class. In chapter 3, the number of

models was the same as the number of training images (and in effect [Leung

and Malik, 2001] used 20 models/images for every texture). Here, we want to

reduce the number of models to that appropriate for each class, independent

of the number of training images.

One would expect that the number of different models that are needed

to characterise a texture is a function of how much the texture changes in

appearance with imaging conditions, i.e. it is a function of the material prop-

erties of the texture. For example, if a texture is isotropic then the effect

of varying the lighting azimuthal angle will be less pronounced than for one

that is anisotropic. Thus, other parameters (such as relief profile) being

equal, fewer models would be required for the isotropic texture (than the

anisotropic) to cover the changes due to lighting variation. This is demon-

strated in figure 4.1.

However, if we are selecting models for the express purpose of classifica-

tion, then another parameter, the inter class image variation, also becomes

very important in determining the number of models. For example, even if a
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Figure 4.1: Models per texture: The top row shows four images of the same
texture, Ribbed Paper, photographed under different viewing and lighting
conditions. The images look very different. The bottom row shows images of
Rough Paper taken under the same conditions as the images in the first row.
These images don’t differ so markedly because the texture doesn’t exhibit
surface normal effects. The consequence is that fewer models are required to
represent Rough Paper over all viewpoints and lighting than Ribbed Paper.

texture varies considerably with changing imaging conditions it can be clas-

sified accurately using just a few models if all the other textures look very

different from it. Conversely, if two textures look very similar then many

models may be needed to distinguish between them even if they do not show

much variation individually.

Broadly speaking, there are two major approaches to the problem of

model reduction. In the first, various concepts from the Machine Learning

literature can be used to select a subset of the models while maximising some

criteria of classification and generalisation. The second approach is geometric

and focuses on building descriptors invariant to imaging conditions so as to

reduce the number of models needed.

4.1.1 Model selection

Many Machine Learning techniques have been developed to reduce the num-

ber of models in a classification algorithm. One of the simplest exam-
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ples [Duda et al., 2001], for a nearest neighbour classifier, is to remove each

model for which all the neighbouring models belong to the same class. This

can be done safely as these models make no contribution in determining

the classification boundaries (as can be seen from the Voronoi tessellation).

However, in practice this has often been found not to lead to a substantial

reduction in the number of models.

The Voronoi condensing algorithm given above is an example of a method

which is decision boundary consistent, i.e. the reduced set of models has ex-

actly the same decision boundaries as the original training set. Another class

of nearest neighbour reduction algorithms aim to be training set consistent

where the criteria is that the reduced set must be able to correctly classify

the original training set. Examples of such algorithms are the Condensed

Nearest Neighbour (CNN) method of Hart [Hart, 1968], the Reduced CNN

of Gates [Gates, 1972] and the Batch CNN of Devi and Murti [Devi and

Murty, 2002]. Unfortunately, most training set consistent methods can be

prone to over-fitting. To counter this, editing methods [Wilson, 1972] have

been developed to improve generalisation and should be applied before the

reduction process [Dasarathy et al., 2000].

It is also possible to reduce the number of models by completely switching

classifiers. For instance, Support Vector Machines [Cristianini and Shawe-

Taylor, 2000, Hayman et al., 2004, Kim et al., 2002, Scholkopf and Smola,

2002], and perhaps more appropriately Relevance Vector Machines [Tip-

ping, 2001] and Reduced Support Vector Machines [Lee and Mangasarian,

2001, Romdhani et al., 2001], are both capable of reducing the number of

models while providing good generalisation. Methods have also been de-

veloped to reduce the number of models by incorporating invariance into

the learning framework. In [Scholkopf et al., 1996], virtual support vectors
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are generated in accordance with the desired invariance transformations to

account for the effects of translation and rotation. Other approaches are

to pre-process the data to make the kernels themselves invariant to input

transformations [Burges, 1999] or to modify the cost function so as to obtain

a decision hyperplane whose normal is orthogonal to the invariance “tan-

gent” [Chapelle and Scholkopf, 2002].

In this subsection, we investigate two schemes for model reduction in a

nearest neighbour classifier framework. Both these schemes take into account

the inter and intra class image variation. Two types of experiments are

performed for either method. In the first, models are selected only from

the training set and classification results reported only on the test set. In

the second type, the classification experiments are modified slightly so as to

maximise the total number of images classified. Following [Cula and Dana,

2004], if only M models per texture are used for training, then the rest of

the 46 −M training images are added to the 46 test images so that a total

of 92−M images are classified per material. For example, when classifying

61 textures, if only M = 10 models are used on average then a total of 82

images per texture are classified giving a total of 82×61 = 5002 test images.

This is done so as to be able to make accurate comparisons with [Cula and

Dana, 2004]. The texton dictionary used in all experiments is the same as

the one in the previous chapter and has 200 textons.

K-Medoid algorithm

Each histogram may be thought of as a point in R
N , where N is the number

of bins in the histogram, so that the models for a particular texture class

simply consist of a set of points in R
N space. Given a distance function

between two points, in our case χ2, the set of points corresponding to a
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texture’s models may be clustered into a few representative prototypes, and

the set of points then replaced by the prototypes. There are three different

choices of how the clustering can be implemented: (a) clustering can be done

within each class individually without looking at the information present in

other classes, (b) clustering can be done within each class but while making

use of other class labels in the form of a validation set (in a fashion similar

to the hierarchical algorithms of [Chang, 1974,Mollineda et al., 2002]) or (c)

all the models, across all classes, can be clustered together and no special use

is made of the class information. We opt for (c) due to historical reasons.

This has the disadvantage of “mixing” classes within a cluster but is also

potentially less prone to over-fitting.

The clustering is implemented using the K-Medoid algorithm. This is

a standard clustering algorithm [Kaufman and Rousseeuw, 1990] where the

update rule always moves the cluster centre to the nearest data point in the

Average # of models / texture Average # of models / texture
filters 3 6 9 3 6 9
S 77.47% 86.05% 91.08% 75.87% 85.76% 90.65%
LMS 75.28% 85.06% 89.52% 74.89% 85.22% 89.35%
LML 77.47% 89.30% 93.43% 78.15% 88.59% 92.50%
BFS 78.65% 89.59% 94.10% 78.80% 88.59% 92.50%
MR8 77.08% 89.88% 93.55% 79.35% 89.57% 93.59%
MR4 71.07% 80.93% 86.39% 71.09% 81.85% 84.57%
MRS4 77.92% 86.63% 91.08% 77.39% 86.74% 91.09%

(a) (b)

Table 4.1: Classification results for each of the filter sets when the models
are automatically selected by the K-Medoid algorithm. In (a), the training
and test sets are kept distinct while in (b) the images from the training set
which are not selected as models are added to the test set and classified.
Both types of experiments give very similar results, even though many more
images have to be classified correctly in (b) to achieve the same performance
as in (a). In all cases a dictionary of 200 textons is used and there are 20
textures being classified.
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cluster, but does not merge the points as in the case of the more popular

K-Means. The K-Means algorithm can only be applied to points within a

texture class. It can not be applied across classes as it merges data points

and thus the resultant cluster centres can not be identified uniquely with

individual textures. Another problem with K-Means is that using the χ2

statistic does not lead to a closed form solution for the update equations.

Neither of these points is a problem for the K-Medoid algorithm as the cluster

centres are always data points themselves. Table 4.1 lists the results of

classifying 20 textures using the different filter banks with K = 60, 120 and

180, resulting in an average of 3, 6 and 9 models per texture.

Using, on average, 9 models per texture class, MR8 achieves an accuracy

of 93.55% in the first type of experiment (table 4.1a) and in the second

type (table 4.1b) achieves 93.59% while classifying many more test images.

Considering that the number of models per texture has been reduced from

46 to 9, this compares very well to the 97.83% obtained by the basic VZ

algorithm (see column 1 in table 3.2). Another interesting fact is that now,

the 4 dimensional filter bank MRS4 is doing better than, or at least as well

as, the 13 dimensional S and the 48 dimensional LMS filter banks.

However, K-Medoid clustering does have the disadvantage that very simi-

lar models are aggregated into a single cluster even if they come from different

texture classes. Similarly, many clusters centres, rather than just one, might

be used to represent models which are spread apart even if they belong to

the same texture class. Both these shortcomings can be overcome by using a

greedy algorithm which prunes the list of models on the basis of classification

boundaries.
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Greedy algorithm

An alternative to the K-Medoid clustering algorithm is a greedy algorithm,

based on the post-processing step of the reduced nearest neighbour rule [Gates,

1972,Toussaint, 2002], designed to maximise the classification accuracy while

minimising the number of models used. The algorithm is initialised by set-

ting the number of models equal to the number of training images available.

Then, at each iteration step, one model is discarded. This model is chosen

to be the one for which the classification accuracy decreases the least when

it is discarded. The iterations are repeated until no more models are left.

Note that while the algorithm is constrained to select models only from the

training set, classification performance is being assessed on the test set. This

emulates the setup of [Cula and Dana, 2004] where the model reduction algo-

rithm has access to both training and test images for each texture class and

should therefore facilitate a faithful comparison with their work. However, it

must be emphasised that in real world classification, the test set is not avail-

Average # of models / texture Average # of models / texture
filters 3 6 9 3 6 9
S 88.80% 96.30% 96.30% 88.37% 97.21% 98.01%
LMS 87.28% 96.09% 96.20% 86.69% 95.99% 97.83%
LML 90.65% 98.04% 98.04% 90.06% 98.49% 98.92%
BFS 92.83% 98.37% 98.37% 90.17% 98.55% 99.10%
MR8 93.70% 97.83% 97.83% 90.28% 98.14% 98.80%
MR4 85.22% 94.02% 94.24% 85.00% 93.66% 96.39%
MRS4 89.89% 96.74% 96.74% 88.20% 96.69% 98.19%

(a) (b)

Table 4.2: Classification results for each of the filter sets when the models
are automatically selected by the Greedy algorithm. In (a), the test set is
kept distinct by not adding discarded models to it while in (b) the discarded
models are added to the test set and classified. A dictionary of 200 textons
is used in all cases and there are 20 textures being classified.
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able for inspection to the training set and in such situations it is preferable

to subdivide the training set further into model learning and validation sets.

Table 4.2 lists the results of classifying 20 textures using the different

filter banks. It is very interesting to note that the classification accuracy

obtained using 9 models can actually be better than that obtained using all

46 models (see column 1 in table 3.2). In table 4.2a, this implies that using

a fewer number of models can improve performance and that the Greedy

algorithm is good at rejecting noisy or outlier models. In table 4.2b, this also

indicates that most of the training images being added to the test set are
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Figure 4.2: Classification rates for models selected by the Greedy algorithm
for 20, 40 and 61 textures. In these experiments, the images from the training
set which were not selected as models were added to the test set, as in
table 4.2b.
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being classified correctly.

Table 4.2 also shows that, once again, the 4 dimensional filter bank MRS4

is outperforming the 13 dimensional S and the 48 dimensional LMS filter

banks (apart from the case of 3 and 6 models in table 4.2b when S does

better). However, the reason that the non rotationally invariant filters LML

and BFS are doing so well is because there are hardly any strongly oriented

textures with significant rotation in the 20 classes selected. As the number of

classes increases and more oriented textures are included, the performance of

the rotationally invariant filter bank MR8 surpasses that of LML and BFS.

This is shown in figure 4.2 which plots the classification accuracy versus

number of models for each of the filter banks when classifying 20, 40 and 61

textures. As can be seen, in the case of 40 and 61 textures, the MR8 curve lies

on top followed by LML, BFS. For MR8, a very respectable classification rate

of over 97% correct is achieved using on an average only 9 models per texture,

even when all 61 classes are included. Figure 4.3 shows the 9 textures that

Figure 4.3: Models selected by the Greedy algorithm while classifying all 61
textures: The top row shows the 9 texture classes, and the corresponding
number of models, that were assigned the most number of models by the
Greedy algorithm while the bottom row shows the 9 classes that were assigned
the least number of models. Moving from left to right, the textures and the
number of models assigned to it are: Artificial grass (17), Sandpaper (15),
Velvet (13), Plaster B (13), Rug A (13), Terrycloth (12), Aluminium Foil (12),
Quarry Tile (12), White Bread (12), Lettuce Leaf (4), Sponge (4), Cracker
A (3), Peacock Feather (3), Corn Husk (3), Straw (3), Painted Spheres (3),
Roof Shingle (3) and Limestone (2).
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were assigned the most models as well as the 9 textures that were assigned

the least models while classifying all 61 textures.

Discussion

The results for both the K-Medoid and the Greedy algorithms, while using

the MR8 filter bank, compare very favourably with those reported in [Cula

and Dana, 2004] and [Leung and Malik, 2001]. In the case where there are 20

textures to be classified, the K-Medoid algorithm has a classification accuracy

of 93.59% while using, on average, 9 models per texture class while the Greedy

algorithm achieves an accuracy of 98.80%. In contrast, for the same 20

textures, Cula and Dana obtain a classification rate of 71% while using 8

models per texture class (by taking the most significant image from each

texture and using a manifold merging procedure). This increases marginally

to 72% if 11 models are used per texture (see figure 19b and table 4 in [Cula

and Dana, 2004]). Note that the comparison is not exact since we classify

only 92 − 9 = 83 images per texture class as compared to the 156 − {8, 11}
classified by Cula and Dana. Hence, [Cula and Dana, 2004] classify many

more images, some of which might be hard to categorise correctly because of

the oblique viewing angle.

Nevertheless, there is a significant level of difference between the perfor-

mance of the K-Medoid and the Greedy algorithms on one hand and the

manifold method of [Cula and Dana, 2004] on the other. This is primar-

ily due to the fact that the methods developed here take into account both

the inter class variation, as well as intra class variation. The models that

Cula and Dana learn are general models and not geared specifically towards

classification. They ignore the inter class variability between textures and

concentrate only on the intra class variability. The models for a texture are
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selected by first projecting all the training and test images into a low dimen-

sional space using PCA. A manifold is fitted to these projected points, and

then reduced by systematically discarding those points which least affect the

“shape” of the manifold. The points which are left in the end correspond to

the model images that define the texture. Since the models for a texture are

chosen in isolation from the other textures, their algorithm ignores the inter

class variation between textures.

For 40 textures, Leung and Malik report an accuracy rate of 95.6% for

classifying multiple (20) images using, in effect, 20 models per texture class.

For single image classification under known imaging conditions, using 4 mod-

els per texture class results in a drop in the accuracy rate to 87% (as com-

puted for 5 test images per texture). The MR8 filter bank achieves 95.6%

accuracy on the same textures using only 5.9 models per texture, and further-

more achieves 98.06% accuracy using, on average, 8.25 models per texture.

4.1.2 Pose normalisation

In this subsection we discuss some geometric approaches to model reduc-

tion. In theory, these approaches are valid only in the absence of 3D effects,

i.e. for planar textures where illumination does not play a major role, and

where a 3D rotation and translation of the texture is equivalent to an affine

transformation of its image. However, in practice, these methods are quite

robust.

The fundamental idea is to incorporate some level of geometric invariance

into a model. This will ultimately allow us to be invariant to changes in

the camera viewpoint and thereby reduce the number of models required to

characterise a texture. The use of rotationally invariant filters is already a

first step in this direction but the problem of scale still needs to be resolved
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(we are ignoring perspective effects for the moment). One approach could

be to extend the MR sets to take the maximum response over all affine

transformations of the basic filter [Caenen and Van Gool, 2004], but that is

not investigated here. Instead we focus on the method of pose normalisation.

In [Schaffalitzky and Zisserman, 2001] it was demonstrated that, provided

a texture has sufficient directional variation, it can be pose normalised by

maximising the isotropy of its gradient second moment matrix (a method

originally suggested in [Lindeberg and G̊arding, 1994]). The method is ap-

plicable in the absence of 3D texture effects. Here we investigate if this

normalisation can be used to at least reduce the effects of changing view-

point, and hence provide tighter clusters of the filter responses, or better still

reduce the number of models needed to account for viewpoint change.

In detail, if the normalisation is successful, then for moderate changes in

the viewing angle, two such “pose normalised” images of the same texture

should differ from each other by only a similarity transformation. If there

are no major scale effects, the responses of a rotationally invariant filter

bank (MR or S) to these images should be much the same. A preliminary

investigation shows that this is indeed the case for suitable textures.

Figure 4.4 shows results for two textures - Plaster A and Rough Plastic.

Twelve images of each texture are selected to have similar photometric ap-

pearance (i.e. constant illumination conditions), but monotonically varying

viewing angle. The graph shows the χ2 distance between the texton his-

togram of one of the images (selected as the model image) and the rest, before

and after pose normalisation. As can be seen, the χ2 distance is reduced for

the pose normalised images. This in turn translates to better classification

as well. On experiments on 4 textures, using the same 12 image set and one

model per texture, the classification rate increased from 81.81% before pose
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Figure 4.4: The effect of pose normalisation on a set of 12 images for two
textures: Rough Plastic and Plaster A. The 12 images have been sorted
according to increasing viewing angle and this is represented on the X axis.
The Y axis is the χ2 distance between the model image and the given image.
The pose normalised images consistently have a reduced χ2 distance which
translates into better classification.

normalisation to 93.18% afterwards.

One drawback of this method is that the proposed normalisation is global

rather than local. Not only would local normalisation be more robust but

it would also allow the method to be extended to textures which are not

globally planar but which can be approximated as being locally planar. Re-

alizing this, [Lazebnik et al., 2003a,Lazebnik et al., 2003b] proposed alterna-

tive methods of generating local, affine invariant, texture features. In their

framework, certain interest regions are first detected in texture images using

blob and corner detectors. A characteristic scale is found and the interest

regions are pose normalised locally rather than globally. Spin images are

then used instead of filter banks to generate rotationally invariant features

for each region. Their results are very encouraging though no direct com-

parison is possible as their experiments are not carried out on the CUReT

database. One point of concern however, is the reliance on the detection of
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blob and corner like interest regions as there exist many textures which do

not exhibit such markings. Recently, Ravela [Ravela, 2004] has proposed an

alternative affine invariant operator which overcomes this difficulty and can

be applied at almost every pixel in the image. This is achieved by looking

at not just the second order Laplacian but also at the first derivative of a

Gaussian (which matches edges) as well as higher order derivatives (which

match corners, etc).

4.2 Algorithmic variations

In this section, the various generalisations and modifications that can be

made to the basic VZ classification algorithm are investigated. In subsec-

tion 4.2.1, we study the effect of some of the more important parameters on

our classifier. In particular, the effect of the choice of texton dictionary and

training images is studied. We also look at how scaling the images impacts

performance. Finally, the issue of whether information is lost by using just

the first order statistics of rotationally invariant filter responses is discussed

in section 4.2.2. A method for reliably measuring relative orientation texton

co-occurrence is presented in order to incorporate second order statistics into

the classification scheme.

4.2.1 Varying the texton dictionary and training im-

ages

In this subsection, various parameters of the VZ algorithm are varied and

the effect on the classification performance determined. We first calculate a

benchmark classification rate and then vary the images in the training set

and also the size of the texton dictionary to see how performance is affected.
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For the benchmark case, referred to from now on as VZ Benchmark, the

texton dictionary is built by learning 10 textons from each of the 61 textures

(using the procedure described in subsection 3.3.3) to have a total of 610

textons. The 46 training images per texture from which the models will be

generated are chosen by selecting every alternate image from the set of 92

available. Under these conditions, the MR8 filter bank achieves a classifica-

tion accuracy of 96.93% using 46 models per texture for all 61 textures. On

running the Greedy algorithm the classification accuracy increases to 98.3%

using, on average, only 8 models per texture. This defines the benchmark

rate.

We now investigate the effect of choice of textons on the classification

performance. First the number of textons is reduced by learning 10 textons

each from 31 randomly chosen textures to get a dictionary of only 310 textons.

The VZ classifier was retrained and it was found that the accuracy decreased

only slightly from the benchmark to 98.19%.

The number of textons in the dictionary can be further reduced by merg-

ing textons which lie very close to each other in filter response space. The

texton dictionary can be pruned down from 310 to 100 by selecting 80 of the

most distinct textons (i.e. those textons that didn’t have any other textons

lying close by) and then running K-Means, with K = 20, on the rest. This

procedure entailed another slight decrease in the classification accuracy to

97.38%. These results indicate that the pruned dictionaries are still univer-

sal [Leung and Malik, 2001], i.e. texton primitives learnt from some randomly

chosen texture classes can be used to successfully characterise other classes

as well.

The size of the texton dictionary is now increased to see if classification

improves accordingly. Table 4.3 gives a summary of the results. The best
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performance is obtained with a dictionary of 2440 textons when the classi-

fication accuracy is 97.43% using 46 models per texture. Once again, these

46 models were generated by selecting every alternate image from the set of

92 available. On running the Greedy algorithm, the number of models used

is reduced to, on average, 7.14 per texture. If the unused training images

are added to the test set, the classification rate improves to 98.61%. These

results will be referred to as VZ Best.

Number of Before Greedy After Greedy
Textons Classification Models Classification Models

1220 97.11% 46 98.43% 7.56
1830 97.18% 46 98.49% 7.26
2440 97.43% 46 98.61% 7.14
3050 97.32% 46 98.57% 7.41

Table 4.3: The effect of increasing the size of the texton dictionary while
classifying all 61 textures from the CUReT database using the MR8 filter
bank.

In these experiments, we have essentially been comparing different rep-

resentations of the joint probability distribution of filter responses in terms

of their classification performance. A set of textons can be thought of as

adaptively partitioning the space of filter responses into bins (determined by

the Voronoi diagram) and a histogram of texton frequencies can be equated

to a probability distribution over filter responses (this is explored in detail

in chapter 5). In such a situation, the number of bins should not be too few

otherwise the approximation to the true PDF will be poor nor should there

be too many bins so as to prevent over-fitting.

As can be seen in table 4.3 there is a point beyond which increasing

the number of textons actually decreases performance as the data is now

being over fitted. This can be used to automatically select the appropriate

number of textons for a given problem by partitioning the data into a training
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and validation set and then choosing the texton dictionary which maximises

classification on the validation set.

As regards the choice of training images, it could be argued that the

results presented here are biased since the training set has been chosen by

including every alternate image from the set of 92 available per texture. This

issue is addressed by repeating the classification experiment but with the

training images chosen randomly. The dictionary of 2440 textons from VZ

Best is used and the experiment repeated 50,000 times. Figure 4.5 shows the

distribution of classification results when 46 images were chosen randomly

from every texture class to form the training set while table 4.4 provides

a summary of the results for varying sizes of the training set. The mean

classification accuracy when the 46 models were chosen randomly was 97.28%

which is very similar to the 97.43% attained by VZ Best when the 46 models

were chosen by including every alternate image. The standard deviation was

0.316% and the maximum accuracy attained was 98.40%. This shows that

the VZ Best experimental setup is not biased.

In summary, the best classification rate achieved, while classifying all 61

textures, was 98.61% obtained when 2440 textons were used and the worst

Training images Classification Statistics
per texture Mean STD Min Max

46 97.28% 0.316% 95.72% 98.40%
23 94.22% 0.456% 91.97% 95.82%
12 89.02% 0.679% 85.92% 91.84%
6 80.67% 0.986% 76.46% 84.50%
3 69.70% 1.373% 63.90% 75.52%

Table 4.4: Classification statistics when the training images were chosen
randomly. A dictionary of 2440 textons was used and all 61 textures were
classified. In each case, the statistics were gathered over 50,000 runs of the
classification experiment.
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Figure 4.5: The distribution of classification percentages when 46 training
images are chosen randomly per texture from the set of 92 available. The
experiment was run 50,000 times with a dictionary of 2440 textons and all
61 materials in the CUReT database were classified. The mean classification
accuracy was 97.28% with a standard deviation of 0.316%. The maximum
was 98.4% and the minimum was 95.72%.

rate was 97.38% when only 100 textons were used. These results are listed

in table 4.5. We can therefore conclude that our algorithm is robust and

relatively insensitive to the choice of training image set and texton vocabu-

lary with the classification rate not being affected much by changes in these

parameters.

Number of Before Greedy After Greedy
Textons Accuracy Models Accuracy Models

VZ Worst 100 95.32% 46 97.38% 9.83
VZ Benchmark 610 96.93% 46 98.30% 8.00
VZ Best 2440 97.43% 46 98.61% 7.14

Table 4.5: Benchmark, worst and best case results for varying parameters of
the VZ algorithm.

Finally, a word about scale. It may be of concern that the MR4 filter bank

does not have filters at multiple scales and hence will be unable to handle

scale changes successfully. To test this, 25 images from 14 texture classes
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were artificially scaled, both up and down, by a factor of 3. The classification

experiment was repeated using the original, normal sized, filter banks and

texton dictionaries. It was found that as long as models from the scaled

images were included as part of the texture class definition, classification

accuracy was virtually unaffected and classification rates of over 97% were

achieved. However, if the choice of models was restricted to those drawn

from the original sized images, then the classification rate dropped to 17%.

It is evident from this that filter bank and texton vocabulary are sufficient,

and it is the model that must be extended (see figure 4.6).

(a) (b) (c)

Figure 4.6: Scaling the data results in new models: The histogram of texton
labellings of (a) the original image (b) the image scaled up by a factor of
3 and (c) the image scaled down by a factor of 3. All three models are
substantially different indicating that the model must be extended.

4.2.2 Orientation co-occurrence

The classification scheme, up to this stage, has only used information about

first order texton statistics (i.e. their frequency and not a measure of their

co-occurrence). However, recent research into texture driven content-based

image retrieval [Schmid, 2001] has shown that a hierarchical system which

uses co-occurrence of textons over a spatial neighbourhood can lead to good

results. Therefore, in this subsection, we investigate whether incorporating

such second order statistics can improve classification performance on the

CUReT database.
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As was seen in the previous subsection, classification on the basis of tex-

ton frequency information alone is already very good and rates of over 97%

can be achieved. What is also interesting is that, of the images that were mis-

classified, the correct texture class was ranked within the top 5 most of the

times. Figure 4.7 shows how similar one of the misclassified novel images is

to both the top ranked, but incorrect, texture model and the second ranked,

but correct, model. Since the MR8 filter bank is rotationally invariant, there

is the possibility that some of these misclassifications are due to two different

texture classes, which are not rotationally related, being mapped to the same

texton frequency distribution. Therefore, we focus on the question of whether

incorporating second order texton statistics, in the form of co-occurrence of

angles, can improve classification (though the method developed here is gen-

eral and can also be applied to spatial co-occurrence).

(a) (b) (c)

Figure 4.7: Misclassifications: (a) is an image of Artificial Grass taken from
the test set which was misclassified as (b) Pebbles. The next closest model
image to (a) is (c) which belongs to the correct texture class - Artificial
Grass. The misclassified novel image is perceptually quite similar to both
the correct and the incorrect model images.

Reliably measuring a relative orientation co-occurrence statistic

Given a texton in an image labelling, the objective is to measure the rel-

ative angle of occurrence of surrounding textons, that lie within a circular
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neighbourhood, with respect to the given texton. Certain difficulties have to

be overcome in order to reliably measure this relative angle co-occurrence.

Firstly, the angles of occurrence of the textons have to be measured robustly.

Conventionally, working in a match filter paradigm, the orientation of a fea-

ture (such as an edge or a bar) is determined to be the angle of maximum

response of a filter designed to match that feature. However, features can
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Figure 4.8: Determining the orientation of image features: The top row shows
images of 3 textures (a) Corduroy, (b) Rough Plastic and (c) Frosted Glass,
with a highlighted central image patch which is matched with an edge filter at
all orientations. The magnitude of the filter response versus the orientation is
plotted in the bottom row. As can be seen: (a) is a strongly oriented texture
having a single direction and therefore its filter response is uni-modal; (b)
the texture contains edges along several directions and this is reflected in its
filter response; (c) the texture is isotropic and the features have no specific
orientation. Plots (b) and (c) show that defining the orientation of a feature
to be the angle at which the maximal filter response occurs can be unstable.
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occur at multiple angles at the same point and, as such, it is difficult to assign

them a particular orientation (see figure 4.8). For instance, an edge filter will

have a maximal response at two orientations when matching a corner and

choosing one edge orientation over the other will lead to instabilities. Note

that these instabilities do not affect the MR representation because only the

value of the response (not its angle) is significant – if the same value occurs

at two orientations the orientation corresponding to the maximum response

is unstable, but the maximum response is not. Here we use the oriented filter

(of MR8) that has the maximum response to determine the orientation.

Returning to relative orientation, a robust representation can be obtained

if the magnitude of the filter response at each angle (normalised so that the

sum of magnitudes squared over all angles is unity) is treated as a confi-

dence measure in the feature occurring at that orientation. Thus, in our

case, this normalised magnitude vector will be a 6 vector representing the

confidence that the given feature occurs at the 6 angles corresponding to the

orientations present in the MR8 filter bank (though a richer representation

can be obtained using approximated steerable kernels and interpolation [Per-

ona, 1992]). The relative angles between two features, which is invariant to

rotation, can now be calculated by computing the cross-correlation between

their normalised magnitude vectors. Given a central texton, we can compute

the frequency with which other textons occur at various relative angles to it

by forming the sum of the cross-correlations between the normalised magni-

tude vectors of the central texton and the surrounding textons. Essentially,

this is computing (via soft binning) the count of how many times a neigh-

bouring texton occurs at a given angle relative to the central texton. To

maintain rotational invariance, the surrounding textons come from a circular

neighbourhood with a predefined radius, centred around the given texton.
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Extending the VZ algorithm

Now that a co-occurrence 6-vector can be associated with every texton in an

image labelling, the VZ algorithm can be extended to use the joint distri-

bution of filter responses and co-occurrence vectors. Just as filter responses

were clustered into filter response textons in subsection 3.3.3, co-occurrence

vectors can be clustered to find exemplars as well, and a dictionary of co-

occurrence vector textons can be formed. Textons from this dictionary can

be used to label the co-occurrence vectors for a given image. The model for

a training image then becomes the joint histogram of the frequency of oc-

currence of filter response textons and co-occurrence vector textons. Thus,

a model is an Kfr × Kcv matrix M where Kfr is the number of filter re-

sponse textons and Kcv is the number of co-occurrence vector textons. Each

entry Mij in this matrix represents the probability of filter response tex-

ton Kfri and orientation co-occurrence texton Kcvj
occurring together in the

training image. This is somewhat similar to the co-occurrence representa-

tion of [Schmid, 2001]. To classify a novel image, its joint histogram is built

and is then compared to all the models using χ2 over all elements of the M

matrix. Thus, the essence of the classifier remains the same, the only ex-

tension is that joint distribution of filter response and co-occurrence textons

are used rather than just the histogram of filter response textons. Hence, we

get to add extra information and yet retain all the benefits of the existing

classification scheme.

Experimental setup and classification results

The orientation co-occurrence texton dictionary is created by clustering the

co-occurrence vectors (calculated for a particular radius of the circular neigh-

bourhood) from the same set of 13 training images per texture that were used
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to generate the filter response texton dictionary. The filter responses and co-

occurrence vectors of the training images are then labelled using the two

texton dictionaries. Finally, the models are built by forming the frequencies,

in the Kfr ×Kcv texton space, of the joint occurrence of the filter response

textons and the orientation co-occurrence textons.

Obviously, the choice of Kfr and Kcv is important as Kfr × Kcv equals

the total number of textons used and therefore determines how accurately

the joint PDF is approximated. However, Kfr cannot be chosen to equal 610

as had been done for VZ Benchmark, because the total number of textons

becomes too large and we start over-fitting the data (see table 4.6 (a)-(c)). A

lower value, such as Kfr = 30, was found to be more appropriate. Table 4.6

(d)-(f) lists the classification results obtained for various values of the radius

when Kcv is also set to 30. The performance, using the joint representation,

Radius
610 FR 610 CV 610× 610 30 FR 30 CV 30× 30
Textons Textons Joint Textons Textons Joint

01 96.86% 74.51% 88.02% 92.94% 63.93% 95.22%
02 96.75% 68.13% 85.28% 92.62% 60.08% 94.72%
05 96.86% 65.39% 85.88% 92.87% 54.84% 94.15%
10 96.65% 61.26% 85.13% 92.23% 48.68% 93.33%

(a) (b) (c) (d) (e) (f)

Table 4.6: Classification results for all 61 textures using 46 models per texture
when orientation co-occurrence information is incorporated into the classi-
fication scheme. (a) classification accuracy if only 610 filter response (FR)
textons are used to label images and build models. There are minor varia-
tions in the classification rate as the number of points available for labelling
changes with the radius. (b) classification accuracy if only 610 co-occurrence
vector (CV) textons are used. (c) classification rate if the joint distribution
is used. The results are poor as there are too many textons and the data
is being over fitted. The next three columns have the same format except
now both the texton dictionaries have been pruned to 30 textons each. The
joint classification rate improves and is better than either of the marginals,
though it is still not as good as that obtained by just using 900 FR textons.
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is better than using just 30 filter response textons or just 30 co-occurrence

vector textons. Though it is worse than if 900 filter response textons were

used without any co-occurrence. If the radius is kept fixed and Kcv varied

then the performance of the joint representation, predictably, first increases,

reaches a maximum and then falls (though in no case is it ever able to sur-

pass the performance achieved using an equivalent number of filter response

textons alone).

These results indicate, that at least for this dataset, the density of filter

response textons is the best measure of discrimination and that orientation

co-occurrence does not help much in classification (similar results were found

for spatial co-occurrence as well). They also confirm that rotational invari-

ance is advantageous and that no significant information is being lost in this

case by using a rotationally invariant filter bank.

4.3 Conclusions

In this chapter, we have studied variations and extensions of the VZ classifi-

cation algorithm. In particular, two novel methods for reducing the number

of models needed to characterise textures were introduced and their superi-

ority over existing algorithms demonstrated. While the MR8 filters tended

to do the best in general, the extremely low dimensional MRS4 filter bank

also did very well when the number of models was reduced. It always out-

performed the 48 dimensional LMS filters and often did better than the 13

dimensional S filter bank. One can therefore hope that MRS4’s performance

will be comparatively even better when there are large variations in scale and

rotation and only a few models are available for classification.

As regards choice of training images and texton dictionary, it was shown
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that the VZ classifier is fairly robust. For VZ Benchmark, a classification

accuracy of 96.93% was obtained using a dictionary of 610 textons and 46

models per class. This went up to 97.43% for VZ Best using 2440 textons.

The number of models was reduced to between 7 and 8 per texture class

using the Greedy algorithm.

Finally, we concluded that even though the basic VZ classification algo-

rithm can be extended by incorporating second order statistics this does not

lead to an improvement in the overall classification. This implies that using

only the frequency distribution of textons is sufficient and that no significant

information is being lost by employing rotationally invariant filter banks in

this case.
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Chapter 5

Unifying Classification

Frameworks

In this chapter, we examine two of the most successful frameworks in which

the problem of texture classification has been attempted – Leung and Ma-

lik’s texton frequency comparison framework described in chapter 3 and the

Bayesian framework as exemplified by the classifier of [Konishi and Yuille,

2000]. While the frameworks appear seemingly unrelated, we draw out the

similarities between them, and show that the two can be made equivalent

under certain choices of representation and distance measure.

The equivalence is made possible as there is a close correspondence be-

tween the two common representations of filter outputs – textons and binned

histograms. Furthermore, nearest neighbour matching and Bayesian classi-

fication can be shown to give identical results for particular choices of the

distance measure. These facts allow a direct comparison to be made be-

tween the nearest neighbour texton frequency comparison framework and

the Bayesian framework.

113
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5.1 Introduction

Chapter 3 introduced the concept of textons as being the fundamental build-

ing blocks of a texture, i.e. a texture could be thought of as being generated

by the overlaying of its textons. The textons, in turn, could be determined

automatically by clustering the texture’s filter responses. This, quite natu-

rally, led to a framework where textures were modelled by keeping a count of

how frequently a particular texton occurred in a given texture image. Such

models were sufficient for classification because, as was shown in section 3.2,

if a texture was found to have many more textons representing holes rather

than textons representing horizontal edges, it could safely be concluded that

the texture must be sponge rather than ribbed paper. This was validated

by the classification results of the VZ algorithm where nearest neighbour

matching of texton frequencies using the χ2 statistic achieved very good per-

formance on the CUReT database. As such, this modelling and classification

framework has come to be widely used (although other distance measures

could also be employed such as the Bhattacharya metric [Thacker et al.,

1997], Earth Mover’s distance [Rubner et al., 2000], Mutual Information, KL

divergence and Cross Entropy [Kullback, 1968]).

Konishi and Yuille [Konishi and Yuille, 2000] argued in favour of a Bayesian

alternative. Filter banks were still used to extract texture features, but now

the goal was to learn the class conditional distribution of filter responses

(stored as binned histograms) so that Bayes’ decision rule could be used to

classify each pixel. While Konishi and Yuille did not classify image regions,

their algorithm could easily be extended to do so [Schmid, 2001] by mak-

ing the näıve Bayes assumption that a region is a collection of statistically

independent pixels, and whose probability is therefore the product of the

individual pixel probabilities.
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On the surface, it seems that these are two different and competing frame-

works. Leung and Malik’s methodology appears to be motivated by the

concept of a texton and psychophysical research suggesting that their first

order statistics are sufficient for pre-attentive texture discrimination [Malik

and Perona, 1990]. On the other hand, Konishi and Yuille’s methodology

appears to be statistically grounded and applies the more general principle

that Bayesian classification, whenever possible, is optimal and therefore to

be preferred.

However, in this chapter, we show that these two schools of thought are ac-

tually very similar. This is illustrated in figure 5.1 which shows that although

textons had initially been introduced as physical entities representing texture
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Figure 5.1: Although textons were introduced as exemplar filter responses
generated by physical texture primitives, they also have a statistical interpre-
tation wherein they represent the joint PDF of filter responses. For instance,
they could be viewed as representing the means in a Gaussian Mixture Model.
Alternatively they could form a semi-parametric representation using binned
histograms.
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primitives, they also have a statistical interpretation wherein they represent

the joint PDF of filter responses (as a mixture model or binned histogram for

instance). Thus, there is a close correspondence between texton frequencies

and binned histograms and section 5.2 shows how one representation can be

converted into the other. Experiments on the CUReT dataset, described in

section 5.3, confirm that very similar results are achieved by the VZ algo-

rithm using either representation. To complete the equivalence between the

two frameworks, section 5.4 shows how nearest neighbour matching using

suitable distance measures gives identical results to näıve Bayesian classi-

fication with uniform priors. Coupled with the texton-bin correspondence,

this lets us implement a Bayesian classifier using the texton representation

and thereby make direct comparisons between the two frameworks. These

results have previously appeared in [Varma and Zisserman, 2004,Varma and

Zisserman, 2002c].

5.2 Filter response representation

The texton representation of filter responses was discussed in chapter 3 and

details can be found in section 3.3. In this section, we first introduce the

binned histogram representation and associated statistical model and then

show how to convert one representation to the other.

5.2.1 Histogram representation by binning

In this representation, the model corresponding to a given image is the joint

probability distribution of the image’s filter responses – obtained by quan-

tizing the responses into bins and normalising so that the sum over all bins

is unity. It should be noted that the number of bins and their placement can
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be important parameters as they determine how crudely, or how well, the

underlying probability distribution is approximated and whether the data is

over-fitted or not. Just as in the VZ algorithm there were multiple models

characterising each texture class for the texton representation, there are mul-

tiple models for the bin representation as well. This is a necessary departure

from the standard Leung & Malik and Konishi & Yuille frameworks, where

each texture class has a single model, so as to be able to accurately account

for the variation in viewing and illumination conditions.

As an implementation detail, the histogram is stored as a sparse matrix

and the space it occupies is given by: number of non-empty bins × number

of bytes required to store a bin value and its corresponding index. This

is bounded above by the number of data points and compares favourably

to a näıve implementation which stores the full matrix in O(total number

of bins) bytes, but where most of the bins are empty. For example, using

this implementation for the MR8 filter bank with 20 bins per dimension, we

were able to store the PDF of all the training images in less than a hundred

megabytes whereas the näıve implementation would have taken over five

hundred terabytes. Furthermore, it is efficient to store the histogram as a

sparse matrix as the χ2 statistic can be evaluated in O(number of non-empty

bins) flops.

5.2.2 Moving between representations

The two representations of filter responses can be made identical by a suitable

choice of bins or textons. For example, an equally spaced bin representation

can be converted into an identical texton representation by placing a texton

at the centre of every bin (see figure 5.2). It is possible to go the other way

round as well. Every texton representation can be converted into an identical
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bin representation. In this case, the bins will be irregularly shaped and

will correspond to the Voronoi polytopes obtained by forming the Voronoi

diagram of the texton sites. Thus, clustering to get textons can be thought of

as an adaptive binning method and a histogram of texton frequencies can be

equated to a bin count of filter responses. In essence, the comparisons made

next in section 5.3 can be thought of as a comparison between two different

texton dictionaries.

(a) (b)

Figure 5.2: Texton and bin correspondence in two dimensions: (a) Every
texton representation can be converted into an equivalent bin representation
where the bins are the Voronoi polygons. (b) Conversely, an equally spaced
bin representation can be converted into an identical texton representation
by placing a texton at the centre of each bin. A similar equivalence holds in
R
N .

However, it should be noted that in general, not every bin representation

can be converted to an equivalent texton representation in which there is a

bijective mapping between textons and bins. Though it might be possible to

find a similar representation if there are more textons than bins with certain

textons being grouped together to form a particular bin.
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5.3 Classification by distribution comparison

In this section, we investigate the effect of representation on classification

carried out via nearest neighbour matching of filter response distributions.

Given a set of models characterising the 61 material classes present in the

CUReT database, the task is to classify a novel (test) image as one of these

textures. This follows the standard procedure developed for the VZ algo-

rithm: the filter response distribution is computed for the test image, and

both types of representation (texton and bin) are then determined. In either

case, the closest model image, in terms of the χ2 statistic, is found and the

novel image declared to belong to the model’s texture class.

5.3.1 Experimental setup and classification results

The experimental setup is kept unchanged from the one used in subsec-

tion 4.2.1 where VZ Benchmark was defined. Thus, classification is carried

out on all 61 texture classes for both the representations. The texton dic-

tionary is learnt from all 61 classes as well. In addition, there are 46 models

per texture class chosen by selecting every alternate image from the set of 92

available. Classification performance is measured by the proportion of the

2806 test images which are correctly classified as the right texture.

Figure 5.3a plots the classification results obtained using the texton based

representation as the size of the dictionary is varied. The best result (VZ

Best) was 97.43% when K = 40 textons were learnt per texture class re-

sulting in a dictionary of size S = 61 × K = 2440 textons (please refer to

subsection 4.2.1 for a discussion of the results).

For the bin representation, the number and location of the bins are, in

general, important parameters. However, it turns out that in this case ex-
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cellent results are obtained using equally spaced bins. Figure 5.3b plots the

classification accuracy for the test set versus the number of bins used in

the quantization process. The classifier achieves a maximum accuracy of

96.54% when the filter responses are quantized into 5 bins per dimension.

Increasing the number of bins decreases the performance, indicating that the

distribution is being over-fitted and that noise is being learnt as well. The

classification accuracy also decreases with a decrease in the number of bins

as the binning is now coarse.
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Figure 5.3: The variation in classification performance with the number of (a)
textons and (b) bins for a nearest neighbour classifier using the χ2 statistic to
match distributions. The best classification results obtained are (a) 97.43%
using a dictionary of size S = 2440 textons and (b) 96.54% using 5 equally
spaced bins per dimension.

Both the representations give very similar classification results. Of course,

this is not surprising in light of the fact that the two can be made identical.

In this particular instance, however, the texton representation slightly out-

performs the bin representation as the bins are always equally sized while

the textons are learnt adaptively from the given data.
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5.4 Bayesian classification

Given that texton frequencies and histogram binning are equivalent ways of

representing the PDF of filter responses, it is now possible to calculate the

class conditional probability of obtaining a particular filter response using

textons. This setting of a texton representation in a Bayesian paradigm ef-

fectively lets us compare, in this section, the Bayesian framework of Konishi

and Yuille with the texton based distribution comparison framework devel-

oped so far.

The Bayesian classifier of Konishi and Yuille is also divided into a learn-

ing stage and a classification stage. In the learning stage, class priors and

empirical filter response probabilities are learnt from the training data. Once

again, we emphasise that to take into account the variation due to changing

viewpoint and illumination a number of models will be used to characterise

each texture class, rather than just learning a single model per texture class.

In the classification stage, Bayes’ theorem is invoked to calculate the poste-

rior probability of a given filter response from a novel image belonging to a

particular class.

5.4.1 A Bayesian classifier using the texton represen-

tation

The class conditional joint PDF of filter responses is obtained directly from

the histogram of texton frequencies for the various images in the training set

(of section 5.2). It is straight forward to implement the Bayesian classifier

given this information. For a particular model we want to estimate the

posterior

P (Mij|I) = P (Mij|{F(x)}) (5.1)
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where {F(x)} is the collection of filter responses generated from the novel

image I to be classified, Mij is a particular model corresponding to training

image number i taken from texture class number j, and the equality sign

arises from the assumption that all the available information in the image

has been extracted by the filtering process. The image I is classified as the

texture j for which P (Mij|{F(x)}) is maximised over all models (i.e. all ij).

Using Bayes’ rule,

P (Mij|{F(x)}) ∝ P ({F(x)}|Mij)P (Mij) (5.2)

where P ({F(x)}|Mij) is the likelihood of the model Mij, and P (Mij) the

prior on model Mij. Since all models are equally likely in our case, the MAP

class selection reduces to maximising the likelihood, i.e.

M̂ = argmax
Mij

P ({F(x)}|Mij) (5.3)

If the filter responses are assumed spatially independent, then the probability

of all the filter responses from the novel image belonging to the model Mij

is obtained by taking the product of the probabilities of the individual filter

responses, i.e.

P ({F(x)}|Mij) =
∏

x

P (F(x)|Mij) (5.4)

At this point, we take logs and focus on the log-likelihood to clarify the

subsequent discussion,

M̂ = argmax
Mij

∏

x

P (F(x)|Mij) = argmax
Mij

∑

x

logP (F(x)|Mij) (5.5)

= argmax
Mij

∑

x

logP (T (x)|Mij) (5.6)
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= argmax
Mij

S
∑

k=1

Nk logP (Tk|Mij) (5.7)

where Nk is the number of times the kth texton occurs in the novel image

labelling and P (Tk|Mij) is the probability of occurrence of the kth texton in

the model Mij. This equality follows because the log likelihood essentially

amounts to counting the number of times each filter response falls in a par-

ticular bin – but this is exactly what is recorded in the texton frequency

histogram.

5.4.2 Equivalence with minimum Cross Entropy and

KL divergence

We now show that Bayesian classification in this form can be viewed as

nearest neighbour matching of distributions where the distance between two

distributions is measured using the Cross Entropy or the KL divergence.

Cross Entropy is an information theoretic measure of the average number of

bits required to encode symbols from a given alphabet using another alpha-

bet. It is minimised if the same alphabet is used throughout. Based on this

observation, Cross Entropy can be used to determine how similar a given dis-

tribution is to another distribution. The Cross Entropy between two discrete

distributions, p and q, is given by H(p, q) = −∑

pk log qk and the smaller

this value the better the match between the two distributions. The KL di-

vergence is a related measure of the similarity between two distributions and

is defined as D(p‖q) =
∑

pk log (pk/qk).

Nearest neighbour matching using Cross Entropy or KL divergence can

be shown to be equivalent to the Bayesian formulation [Bach and Jordan,
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2002,Vasconcelos and Lippman, 2000,Viola, 1995] by noting that from (5.7),

M̂ = argmaxMij

S
∑

k=1

Nk logP (Tk|Mij)

= argmaxMij

S
∑

k=1

Nk
∑

lNl

logP (Tk|Mij) (5.8)

= argminMij
−

S
∑

k=1

P (Tk|MI) logP (Tk|Mij) (5.9)

= argminMij
H(p, q)

where pk = P (Tk|MI) = Nk/
∑

lNl and qk = P (Tk|Mij) give the probabilities

of the occurrence of the kth texton in the novel (MI) and model (Mij) image

labellings respectively.

Therefore, a Bayesian classifier which assumes uniform priors and the spa-

tial independence of filter responses will give equivalent results to a nearest

neighbour classifier based on the Cross Entropy between the texton distribu-

tions of the novel and model images.

The result can be straight forwardly extended to KL divergence by adding

the constant
∑S

k=1
pk log pk to (5.9) and taking it inside the argmin operation

as it does not depend on Mij. Thus,

M̂ = argminMij

S
∑

k=1

pk log pk −
S

∑

k=1

pk log qk (5.10)

= argminMij

S
∑

k=1

pk log
pk
qk

(5.11)

= argminMij
D(p‖q)

Most of these results are by now standard. The significance for us is that
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by combining these equivalences with the texton-bin correspondence shown

in section 5.2, it becomes immediately clear that Leung and Malik’s texton

distribution comparison framework can be made equivalent to the Bayesian

framework of Konishi and Yuille.

5.4.3 Relationship with χ2

The equivalence can be taken further by noting that the capacitory discrim-

inant, a commonly used extension of the KL divergence, is bounded very

tightly by the χ2 statistic and that the bounds are attained when the two

probability distributions being compared are similar. In fact, Topsoe [Top-

soe, 2000] has shown that

1

2
χ2(p, q) ≤ D(p‖q)− 2D( 1

2
(p+ q)‖q) ≤ ln 2 · χ2(p, q) (5.12)

where the quantity D(p‖q)−2D( 1

2
(p+q)‖q) is denoted by C(p, q) and known

as the capacitory discriminant (it is also referred to as Jeffreys’ divergence

sometimes [Rubner et al., 2000] even though C differs slightly from the orig-

inal definition [Kullback, 1968]). The capacitory discriminant is often pre-

ferred over the KL divergence as it is symmetric, more robust and
√

C(p, q)

is a metric [Endres and Schindelin, 2003]. Furthermore, a Taylor series ex-

pansion of C gives

lim
p→q

C(p, q) =
1

2
χ2(p, q) (5.13)

and a similar relation holds for D and the asymmetrical form of χ2 (both

relations are derived in Appendix A).
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5.4.4 Bayesian classification experiments

The equivalence results from the previous subsections allow us to cast a

Bayesian classifier as a nearest neighbour classifier with KL divergence as

the distance measure. Thus, the experimental setup remains exactly the

same as in section 5.3 except now the distance measure being used is KL

divergence rather than the χ2 statistic. Figure 5.4 plots the classification

accuracy versus the size of the texton dictionary for the Bayesian classifier.

The best results are 97.46% for a dictionary of size S = 1830 textons (i.e.

K = 30 textons learnt from each texture class). This is slightly better than

the 97.18% achieved by the VZ algorithm using the same dictionary of 1830

textons as well as the 97.43% achieved by VZ Best using 2440 textons.

A technical point about implementing probability products is that if the
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Figure 5.4: The variation in classification performance of a Bayesian classifier
with the size of the texton dictionary. In each case, there are 2806 models
and 2806 test images. The best classification result obtained is 97.46% using
a dictionary of 1830 textons. The results of the texton based χ2 classifier
(i.e. figure 5.3a) are also plotted for the sake of comparison.
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model histograms are determined directly from the textons frequencies of

the training images then the classification accuracy of the Bayesian classifier

is an astonishingly low 1.06%, i.e. almost all the test images are classified

incorrectly. This is because most novel images contain a certain percentage

of pixels (filter responses) which do not occur in the correct class models in

the training set. This may be a result of an inadequate amount of training

data, or due to outliers or noise. As a consequence, the posterior probability

of these pixels is zero and hence when all the pixel probabilities are multiplied

together the image posterior probability also turns out to be zero.

This is a standard pitfall in histogram based density estimation and three

solutions are generally proposed: (a) smoothing the histogram, (b) assigning

small nonzero values to each of the empty bins, and (c) discarding a certain

percentage of the least occurring filter responses in the belief that they are

primarily noise and outliers. A combination of (b) and (c) is used here:

instead of starting the bin occupancy count from 0, it is started from 1 to

ensure that no bin is ever empty. Some of the least frequently occurring bins

are also discarded. These modifications lead to the classification performance

plotted in figure 5.4.

5.4.5 Comparisons

On the basis of experimental results, there is very little to choose between

the Bayesian and distribution comparison classifiers using the texton repre-

sentation. This is to be expected as, in essence, the test being performed is

a comparison of χ2 and KL divergence as distance measures. Nevertheless,

while both classifiers attain rates of over 97%, there are different theoretical

pros and cons associated with the two approaches.

There can be no doubt that theoretically, when the underlying distribu-
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tions are known perfectly, the Bayesian classifier minimises the classification

error. However, when we don’t have enough data to accurately determine

the true distribution or only have noisy approximations which suffer from the

inherent quantization effects of either clustering or histogram binning then

the superiority of the Bayesian classifier is much less clear. This is evident

from the capability of χ2 to practically cope with empty bins (even though

it is theoretically incapable of doing so) and noisy measurements while the

Bayesian classifier completely collapses unless the probability distribution is

modified. Furthermore, as can be seen from figure 5.4, the Bayesian classifier

is often marginally surpassed by the nearest neighbour χ2 classifier.

There is also the question about the näıve Bayesian assumption that

the observed data is independent. However, this can not be considered a

major drawback of the Bayesian classifier as compared to χ2 because (a) χ2

also makes the very same assumption in its derivation, (b) the experimental

results indicate that extremely good classification results are obtained even

when the assumption is violated (Schmid [Schmid, 2001] notes that this holds

true even for other texture datasets) and (c) if violating the assumption was

leading to large errors then this could be tackled by randomly sampling filter

responses from disjoint regions of the novel image in a bid to decrease their

dependence.

Yet, despite their theoretical limitations, both classifiers appear to work

extremely well in practice as is evidenced by the classification results.

5.5 Conclusions

In conclusion, we have shown that the texton representation of the PDF

of filter responses is equivalent to an adaptive bin representation and, con-
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versely, that every regularly partitioned bin representation can be converted

into an equivalent texton representation. This has enabled the use of texton

densities for texture classification in the Bayesian framework which itself,

under certain circumstances, can be viewed as another measure of distance

in a distribution comparison classification scheme. Doing so has brought to-

gether two seemingly unrelated schools of thought in texture classification –

one based on the Bayesian paradigm and the other on textons and their first

order statistics.
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Chapter 6

Are Filter Banks Necessary?

In this chapter, we take a fresh look at the problem of texture classification

and question the dominant role that filter banks have played so far. An al-

ternative image patch texture representation is developed based on the joint

distribution of pixel intensities in a neighbourhood. Using this new repre-

sentation in the VZ algorithm leads to two startling results, namely that (a)

very good classification performance can be achieved using extremely com-

pact neighbourhoods (starting from as small as 3× 3 pixels square) and that

(b) for any fixed size of the neighbourhood, image patches lead to superior

classification as compared to filter banks with the same support. We discuss

theoretical reasons as to why this might be the case.

6.1 Introduction

Texture research is generally divided into five canonical problem areas: (1)

synthesis; (2) classification; (3) segmentation; (4) compression; and (5) shape

from texture. The first four areas have come to be heavily influenced by the

use of filter banks and wavelets. This is particularly true of synthesis and

131
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classification where some of the best results have been achieved by filter bank

based methods.

However, even though there has been ample empirical evidence to suggest

that filter banks and wavelets can lead to good performance, scant theoret-

ical justification has been provided as to their optimality or, even for that

matter, their necessity for texture classification or synthesis. In fact, the

supremacy of filter banks for texture synthesis was brought into question by

the approach of Efros and Leung [Efros and Leung, 1999]. They demon-

strated that superior synthesis results could be obtained using local pixel

neighbourhoods directly, without resorting to large scale filter banks. In a

related development, Zalesny and Van Gool [Zalesny and Van Gool, 2000]

also eschewed filter banks in favour of a Markov random field (MRF) model.

Both these works put MRFs firmly back on the map as far as texture

synthesis was concerned. Efros and Leung gave a computational method for

generating a texture with similar MRF statistics to the original sample, but

without explicitly learning or even representing these distributions. Zalesny

and Van Gool, using a subset of all available cliques present in a neighbour-

hood, showed that it was possible to learn and sample from a parametric

MRF model given enough computational power.

In this chapter, it is demonstrated that the second of the canonical prob-

lems, texture classification, can also be tackled effectively by employing only

local neighbourhood distributions, and without the use of large filter banks.

A previous version of this work has appeared in [Varma and Zisserman, 2003].
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6.2 The image patch based classifiers

The use of filter banks in texture classification algorithms has largely been

motivated by arguments from feature extraction and dimensionality reduc-

tion. In keeping with these philosophies, filter banks have traditionally

tended to include filters with large support occurring at multiple scales and

orientations.

In this section, we investigate the effect of replacing filter responses with

the source image patches from which they were derived. The rationale for

doing so comes from (3.1) which shows that, essentially, a filter response

is a lower dimensional projection of an image patch onto a linear subspace

spanned by the vector representation of the individual filters (obtained by

row reordering each filter mask). This immediately provides a way of vali-

dating the hypotheses put forward in favour of filtering – for, if the hypothe-

ses are valid, then lower dimensional filter responses must lead to superior

performance as compared to their higher dimensional source patches and,

furthermore, small patches which cannot capture the low frequency signal

component should not do well.

In order to test these hypotheses, the VZ algorithm of chapter 3 is modi-

fied so that filter responses are replaced by their source image patches. Thus,

the new classifier is identical to the VZ algorithm except that, at the filtering

stage, instead of using a filter bank to generate filter responses at a point,

the raw pixel intensities of an N × N square neighbourhood around that

point are taken and row reordered to form a vector in an N 2 dimensional

feature space. All pre and post processing steps are retained and no other

changes are made to the classifier. Hence, in the first stage of learning, all

the image patches from the selected training images in a texture class are

aggregated and clustered. The cluster centres from the various classes are
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Figure 6.1: Image patch textons learnt from the CUReT database using
neighbourhoods of size 7× 7.

grouped together to form the texton dictionary. The textons now represent

exemplar image patches rather than exemplar filter responses (see figure 6.1).

However, the model corresponding to a training image continues to be the

histogram of texton frequencies and novel image classification is still achieved

by nearest neighbour matching using the χ2 statistic. This classifier will be

referred to as the Joint classifier. Figure 6.2 highlights the main difference

in approach between the Joint classifier and the VZ classifier using the MR8

filter bank.

We also design two variants of the Joint classifier – the Neighbourhood

classifier and the MRF classifier. Both of these are motivated by the recog-
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Figure 6.2: The only difference between the Joint and the VZ MR8 repre-
sentations is that the source image patches are used directly in the Joint
representation as opposed to the derived filter responses in VZ MR8.

nition that textures can often be considered realizations of a Markov random

field. In an MRF framework [Geman and Geman, 1984,Li, 2001], the prob-

ability of the central pixel depends only on its neighbourhood. Formally,

p(I(xc)|I(x),∀x 6= xc) = p(I(xc)|I(x),∀x ∈ N (xc)) (6.1)

where xc is a site in the 2D integer lattice on which the image I has been

defined and N (xc) is the neighbourhood of that site. In our case, N is

defined to be the N ×N square neighbourhood (excluding the central pixel).

Thus, although the value of the central pixel is significant, its distribution is

conditioned on its neighbours alone. The Neighbourhood and MRF classifiers

are designed to test how significant this conditional probability distribution

is for classification.

For the Neighbourhood classifier, the central pixel is discarded and only
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the neighbourhood is used for classification. Thus, the Neighbourhood clas-

sifier is essentially the Joint classifier retrained on feature vectors drawn only

from the set of N : i.e. the set of N ×N image patches with the central pixel

left out. For example, in the case of a 3×3 image patch, only the 8 neighbours

of every central pixel are used to form feature vectors and textons.

We next go to the other extreme and, instead of ignoring the central

pixel, explicitly model p(I(xc) ∧ I(N (xc))), i.e. the joint distribution of the

central pixels and its neighbours. Up to now, textons have been used to

implicitly represent this joint PDF. The representation is implicit because,

once the texton frequency histogram has been formed, neither the probability

of the central pixel nor the probability of the neighbourhood can be recovered

straightforwardly by summing (marginalizing) over the appropriate textons.

Thus, the texton representation is modified slightly so as to make explicit the

central pixels PDF within the joint and to represent it at a finer resolution

than its neighbours (just as in the Neighbourhood classifier, the central pixel

PDF was discarded by representing it at a much coarser resolution using a

single bin).

To learn the PDF representing the MRF model for a given training im-

age, the neighbours’ PDF is first represented by textons as was done for the

Neighbourhood classifier – i.e. all pixels but the central are used to form

feature vectors in an N 2− 1 dimensional space which are then labelled using

the same dictionary of 610 textons. Then, for each of the SN textons in turn

(SN = 610 is the size of the neighbourhood texton dictionary), a one dimen-

sional distribution of the central pixels’ intensity is learnt and represented

by an SC bin histogram. Thus the representation of the joint PDF is now

an SN × SC matrix. Each row is the PDF of the central pixel for a given

neighbourhood intensity configuration as represented by a specific texton.
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Figure 6.3: MRF texture models as compared to those learnt using the Joint
representation. The only point of difference is that the central pixel PDF
is made explicit and stored at a higher resolution. The Neighbourhood rep-
resentation can be obtained from the MRF representation by marginalizing
out the central pixel.

Figure 6.3 highlights the differences between MRF models and models learnt

using the Joint representation. Using this matrix, a novel image is classified

by comparing its MRF distribution to the model MRF distributions (learnt

from training images) by computing the χ2 statistic over all elements of the

SN × SC matrix. This will be referred to as the MRF classifier.

Table 6.1 presents a comparison of the performance of the Joint, Neigh-

bourhood and MRF classifiers when classifying all 61 textures in the CUReT

database. Image patches of size 3 × 3, 5 × 5 and 7 × 7 are tried while using

a dictionary of 610 textons. For the Joint classifier, it is remarkable to note

that classification results of over 95% are achieved using patches as small

as 3 × 3. In fact, the classification result for the 3 × 3 neighbourhood is

actually better than the results obtained by using the MR4 (91.70%), MRS4
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N
Joint Neighbourhood MRF with

Classifier Classifier 90 bins
3 95.33% (9.6) 94.90% (9.3) 95.87% (9.4)
5 95.62% (8.4) 95.97% (8.6) 97.22% (8.1)
7 96.19% (8.4) 96.08% (8.2) 97.47% (7.9)

(a) (b) (c)

Table 6.1: Comparison of classification results of all 61 textures in the CUReT
database for different N ×N neighbourhood (patch) sizes: (a) all the pixels
in an image patch are used to form vectors in an N 2 feature space; (b) all
but the central pixel are used (i.e. an N 2 − 1 space); (c) the MRF classifier
where 90 bins are used to represent the joint neighbourhood and central pixel
PDF. The bracketed values report the number of models per texture class as
determined by the Greedy algorithm. A dictionary of 610 textons learnt from
all 61 textures is used throughout. Notice that the performance using these
small patches is as good as that achieved by the multi orientation, multi
scale, large support MR8 filter bank (VZ Benchmark gets 96.93% using 610
textons while VZ Best achieves 97.43% using 2440 textons).

(94.23%), LMS (94.65%) or S (95.22%) filter banks with 610 textons learnt

from all 61 classes. This is strong evidence that there is sufficient information

in the joint distribution of the nine intensity values (the central pixel and its

eight neighbours) to discriminate between the texture classes. For the Neigh-

bourhood classifier, as shown in column (b), there is almost no significant

variation in classification performance as compared to using all the pixels in

an image patch. Classification rates for N = 5 are slightly better when the

central pixel is left out and marginally poorer for the cases of N = 3 and

N = 7. Thus, the joint distribution of the neighbours is largely sufficient

for classification. Column (c) presents a comparison of the performance of

the Joint and Neighbourhood classifiers to the MRF classifier when a reso-

lution of 90 bins is used to store the central pixels’ PDF. As can be seen,

the MRF classifier does better than both the Joint and Neighbourhood clas-

sifiers. What is also very interesting is the fact that using 7× 7 patches, the
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performance of the MRF classifier (97.47%) is at least as good as the best

performance achieved by the multi-orientation, multi-scale MR8 filter bank

with support 49× 49 (97.43% using 2440 textons).
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Figure 6.4: Classification results as a function of neighbourhood size. The
VZ MR8 Best curve shows the best results obtained by varying the size of
the texton dictionary up to 3050 textons. Similarly, the MRF Best curve
shows results obtained for the best combination of texton dictionary and
number of bins as the neighbourhood size is varied. For neighbourhoods
up to 11 × 11, dictionaries of up to 3050 textons and up to 200 bins are
tried. For 13 × 13 and larger neighbourhoods, the maximum size of the
texton dictionary is restricted to 1220 because of computational expense.
The best result achieved by the MRF classifiers is 98.03% using a 7 × 7
neighbourhood with 2440 textons and 90 bins. The best result for MR8 is
97.64% for a 25 × 25 neighbourhood and 2440 textons. The performance
of the VZ algorithm using the MR8 filter bank (VZ MR8) is always worse
than any other comparable classifier at the same neighbourhood size. VZ
MR8 Best is inferior to the MRF curves, while VZ MR8 with 610 textons is
inferior to the Joint and Neighbourhood classifiers also with 610 textons.
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This result showing that image patches can outperform filters raises the

important question of whether filter banks are providing beneficial informa-

tion for classification, for example perhaps by increasing the signal to noise

ratio, or by extracting useful features. To answer this question, the perfor-

mance of the VZ classifier using the MR8 filter bank (VZ MR8) is compared

to that of the Joint, Neighbourhood and MRF classifiers as the size of the

neighbourhood is varied. In each experiment, the MR8 filter bank is scaled

down so that the support of the largest filters is the same as the neighbour-

hood size. Figure 6.4 plots the classification results. It is apparent that for

any given size of the neighbourhood, the performance of VZ MR8 is worse

than that of the Joint or even the Neighbourhood classifiers. This would

suggest that using all the information present in an image patch is more

beneficial for classification than relying on lower dimensional responses of a

pre-selected filter bank. A classifier which is able to learn from all the pixel

values is superior.

However, before proceeding further, it should be established that the

comparisons between the image patch based Joint, Neighbourhood and MRF

classifiers on the one hand and VZ MR8 on the other, are indeed fair and that

comparisons are being made between classifiers of equal complexity. Unfor-

tunately, there does not exist a single definitive measure of the complexity

of a classification algorithm. We therefore focus on two measures of informa-

tion and classification complexity but do not measure the time complexity

(though it can be critical for certain applications).

Given a fixed set of input images for training and a disjoint test set on

which to measure performance, one measure of complexity is the number of

internal parameters of the classifier. In our case, this is the size S of the tex-

ton dictionary which controls the dimensionality of the space in which the
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classifier operates (except for the MRF classifier where the dimensionality

is SN × SC). It is also a measure of the complexity with which the joint

PDF of image patches or filter responses has been approximated. The sec-

ond parameter is the neighbourhood dimension N (equivalently filter bank

support size). In a sense, this is a measure of how much input information

is visible to each of the classifiers and is also an indicator of the number of

parameters of the Markov random field. For instance, a classifier which can

only see 3 × 3 patches has access to much less information about the true

MRF distribution than a 49 × 49 classifier. Analogously, a filter bank with

support 3 × 3 can “see” far less interesting features than a filter bank with

support 49× 49 which can model large scale interactions.

A third parameter could be the dimensionality of the feature space. This

is the length of the filter response vector in the case of filter banks (for

example, 48 for LM and 4 for MR4S) while for patches it equals N 2, i.e.

the size of the patch. However, even though this parameter is important for

measuring the time complexity of the algorithms it is not very meaningful

as a measure of classification complexity unless the input (dimensionality) is

fixed (even in which case it’s a parameter which we’ve chosen to ignore so

far – for instance, when comparing the 4 dimensional MRS4 filter bank to

the 48 dimensional LM filters).

Given these two parameters, S and N , measuring the texton dictionary

and neighbourhood sizes respectively, there are four possibilities as to how

the comparisons between image patch and filter bank based classifiers can

be performed. These are shown in table 6.2 and correspond to whether a

parameter is held fixed or allowed to vary during the comparison.

For constant S and N , the size of the texton dictionary is fixed to S = 610

while the MR8 filter bank is scaled down to have support N × N . In this
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Fixed N Variable N

Fixed S (610) Joint > VZ MR8
Joint

>
VZ MR8

15× 15 49× 49

Variable S
MRF

>
VZ MR8 MRF Best

>
VZ MR8 Best

Best Best 7× 7 25× 25

Table 6.2: Different ways in which the image patch based Joint, Neighbour-
hood and MRF classifiers can be compared to the VZ algorithm using the
MR8 filter bank. In each case, image patches lead to superior classification
as compared to filter banks.

case, figure 6.4 shows that the Joint classifier always does better than VZ

MR8 for each choice of N . Note that the MRF classifier can not be brought

into this comparison as its effective dictionary size is always greater than

610. For fixed S but variable N , the texton dictionary size is held constant

at 610 textons but classifiers are compared for the best neighbourhood size.

For VZ MR8 with 610 textons the best results are 96.93% using 49 × 49

support (VZ Benchmark) but again, figure 6.4 shows that this is inferior to

the performance of the Joint classifier for any neighbourhood size greater

than 15× 15. The results with N held fixed but variable S follow the same

pattern with MRF Best always being superior to VZ MR8 Best for every

neighbourhood size. Finally, allowing both S and N to vary compares the

best performance of the classifiers irrespective of neighbourhood size and

texton dictionary. Again, image patches are superior to filter banks in this

comparison as the best overall image patch result is 98.03% for the MRF

Classifier while for MR8 it is 97.64%.

These results have demonstrated that a classification scheme based on

MRF local neighbourhood distributions can achieve very high classification

rates and can outperform methods which adopt large scale filter banks to

extract features and reduce dimensionality. Before turning to discuss theo-

retical reasons as to why this might be the case, we first explore how issues
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such as rotation and scale impact the image patch classifiers.

6.3 Scale, rotation, synthesis & other datasets

Three main criticisms can be levelled at the classifiers developed in the pre-

vious section. Firstly, it could be argued that the lack of significant scale

change in the CUReT textures might be the reason why image patch based

classification outperforms the multi scale MR8 filter bank. Secondly, the

image patch representation has a major disadvantage in that it is not rota-

tionally invariant. And thirdly, the reason why small image patches do so

well could be because of some quirk of the CUReT dataset and that classi-

fication using small patches will not generalise to other databases. In this

section, each of these three issues is addressed experimentally and it is shown

that the image patch representation is as robust to scale changes as MR8,

can be made rotationally invariant and generalises well to other datasets.

We also briefly illustrate how the representation can be used to synthesise

textures.

6.3.1 The effect of scale changes

To test the hypothesis that the image patch representation will not do as well

as the filter bank representation in the presence of scale changes, four texture

classes were selected from the CUReT database (material numbers 2, 11, 12

and 14) for which additional scaled data is available (as material numbers 29,

30, 31 and 32). Two experiments were performed. In the first, models were

learnt only from the training images of the original textures while the test

images of both the original and scaled textures were classified. In the second

experiment, both test sets were classified once more but this time models were
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learnt from the original as well as the scaled textures. Table 6.3 shows the

results of the experiments. It also tabulates the results when the experiments

are repeated but this time with the images being scaled synthetically by a

factor of two.

Naturally Scaled Synthetically Scaled ×2
Original Original + Scaled Original Original + Scaled

MRF 93.48% 100% 65.22% 99.73%
MR8 81.25% 99.46% 62.77% 99.73%

Table 6.3: Comparison of classification results of the MRF and VZ MR8
classifiers for scaled data. Models are learnt either from the original textures
only or the original + scaled textures while classifying both texture types. In
each case, the performance of the MRF classifier is at least as good as that
using the multi scale MR8 filter bank.

In the naturally scaled case, when classifying both texture types using

models learnt only from the original textures, the MRF classifier achieves

93.48% while VZ MR8.gets only 81.25%. This shows that the MRF classifier

is not being adversely affected by the scale variations. When images from the

scaled textures are included in the training set as well, the accuracy rates go

up to 100% and 99.46% respectively. A similar trend is seen in the case when

the scaled textures are generated synthetically. Both these results show that

image patches cope as well with scale changes as the MR8 filter bank, and

that features do not have to be extracted across a large range of scales for

successful classification.

6.3.2 Incorporating rotational invariance

The fact that the image patch representation developed so far is not rota-

tionally invariant can be a serious limitation. However, it is straight forward

to incorporate invariance into the representation and this is done as follows:
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instead of using an N × N square patch, the neighbourhood is redefined to

be circular with a given radius. Then, before forming feature vectors, each

circular neighbourhood is reduced to a canonical frame by determining its

local orientation and rotating the neighbourhood by the determined angle.

This achieves rotational invariance. Table 6.4 lists the results for the Neigh-

bourhood and MRF classifiers when classifying all 61 textures using circular

neighbourhoods with radius 3 pixels (corresponding to a 7× 7 patch) and 4

pixels (9× 9 patch).

Neighbourhood Classifier MRF Classifier
Rot. Invariant Not Invariant Rot. Invariant Not Invariant

7× 7 96.36% 96.08% 97.07% 97.47%
9× 9 96.47% 96.36% 97.25% 97.75%

Table 6.4: Comparison of classification results of the Neighbourhood and
MRF classifiers using the standard and the rotationally invariant patches.

Using the rotationally invariant representation, the Neighbourhood clas-

sifier with a dictionary of 610 textons achieves 96.36% for a radius of 3

pixels and 96.47% for a radius of 4 pixels. This is slightly better than what

the same classifier achieves using the standard (not invariant) representation

with corresponding 7 × 7 and 9 × 9 patches. The rates for the rotationally

invariant MRF classifier are 97.07% and 97.25% using 610 textons and 45

bins. These results are slightly worse than those obtained using the standard

representation. However, the fact that such high classification percentages

were obtained strongly indicates that rotation invariance can be successfully

incorporated into the image patch representation.

6.3.3 Synthesis

Before testing the image patch classifiers on other datasets, we briefly demon-

strate that our MRF representation may also be used for texture synthesis.
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The algorithm is very similar to [Efros and Leung, 1999,Efros and Freeman,

2001]. First, the MRF statistics of the input texture block are learnt using

the matrix representation of the PDF of image patches. The parameters

that can be varied are N , the size of the neighbourhood, and K the number

of textons used to represent the neighbourhood distribution. The central

pixel PDF is stored in 256 bins in this case. Next, to synthesise the texture,

the input block is initially tiled to the required dimensions. A new image

is synthesised from this tiled image by taking every pixel, determining its

neighbourhood (i.e. closest texton) and setting the value of the pixel to a

value sampled from the learnt MRF distribution. This iteration is repeated

until a desired synthesis is obtained. Results are shown in figure 6.5.

(a) (b) (c) (d)

Figure 6.5: Synthesis Results: (a) Input texture blocks, (b) Ribbed Paper
(CUReT) synthesised using a 7× 7 neighbourhood and 100 textons (c) Efros
and Leung [Efros and Leung, 1999] - 15× 15, 800 textons and (d) D6 (Bro-
datz) - 11× 11, 300 textons.

6.3.4 Results on other datasets

We now show that small image patches can also be used to successfully

classify textures other than those present in the CUReT database. It is

demonstrated that using the Joint classifier with patches of size 3× 3, 5× 5

and 7× 7 is sufficient for classifying the Microsoft Textile and San Francisco

databases. Both databases are described in section 2.3 of the literature re-
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view. While the MRF classifier leads to the best results in general, we show

that on these databases the Joint classifier already achieves very high per-

formances (99.21% on the Microsoft Textile database and 97.9% on the San

Francisco database using only a single training image).

For the Microsoft Textile database, the experimental setup is kept iden-

tical to the one used by [Savarese and Criminsi, 2004]. Fifteen images were

selected from each of the sixteen texture classes to form the training set.

While all the training images were used to form models, textons were learnt

from only 3 images per texture class. Various sizes of the texton dictionary

S = 16×K were tried when K = 10, . . . , 40 textons were learnt per textile.

The test set comprised a total of 80 images. Table 6.5 shows the variation

in performance of the Joint classifier with neighbourhood size N and texton

dictionary size S.

Size of Texton Dictionary S
N ×N 160 320 480 640
3× 3 96.82% 96.82% 96.82% 96.82%
5× 5 99.21% 99.21% 99.21% 99.21%
7× 7 96.03% 97.62% 96.82% 97.62%

Table 6.5: The Joint classifier performs excellently on the Microsoft Textile
database – only a single image is misclassified using 5 × 5 patches. These
results reinforce the fact that very small patches can be used to classify
textures with global structure far larger than the neighbourhoods used (the
image resolutions are 1024× 768).

As can be seen, excellent results are obtained using very small neighbour-

hoods. In fact, only a single image is misclassified using 5 × 5 patches (see

figure 6.6). These results should reinforce the fact that very small patches

can indeed be used to classify textures with global structure far larger than

the neighbourhoods used (the image resolutions are 1024× 768).

The results are just as good for the San Francisco database. The database
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Black Linen

(a)

Black Pseudo Silk

(b)

Figure 6.6: Only a single image in the Microsoft Textile database is misclas-
sified by the Joint classifier using 5 × 5 patches: (a) is an example of Black
Linen but is incorrectly classified as Black Pseudo Silk (b).

has 37 images of outdoor scenes taken on the streets of San Francisco. The

images have been segmented by hand [Konishi and Yuille, 2000] into 6 classes:

Air, Building, Car, Road, Vegetation and Trunk. From the database, a single

image is selected for training the Joint classifier (figure 6.7 shows the selected

training image and its associated hand segmented regions). All the rest of

the 36 images are kept as the test set. Performance is measured by the

proportion of pixels that are labelled correctly during classification of the

Road 7

(a)

Hand Segmentation

(b)

Figure 6.7: The single image used for training on the San Francisco database
and the associated hand segmented regions.
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hand segmented regions. Using this setup, the Joint classifier achieves an

accuracy rate of 97.9%, i.e. almost all the pixels are labelled correctly in

the 36 test images. Figure 6.8 shows an example of a test image and the

regions that were classified in it. This result again validates the fact that

small image patches can be used to successfully classify textured images. In

fact, using small patches is particularly appealing for databases such as the

San Francisco set because large scale filter banks will have problems near

region boundaries and will also not be able to produce many measurements

for small, or irregularly shaped, regions.
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Figure 6.8: Region classification results using the Joint classifier with 7 × 7
patches for a sample test image from the San Francisco database.

6.4 Why does patch based classification work?

The results of the previous sections have demonstrated two things. Firstly,

neighbourhoods as small as 3× 3 can lead to very good classification results
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even for textures whose global structure is far larger. Secondly, classification

using image patches is superior to that using filter banks with equivalent

support. In this section, we discuss some of the theoretical reasons as to why

these results might hold. Even though a formal analysis could be carried out

in terms of Markov random fields, to clarify the discussion we’ll focus on the

texture descriptors as being source image patches from which filter responses

are derived.

6.4.1 Classification using small patches

One of the driving arguments for the use of large scale filter banks in tex-

ture classification has been that of feature extraction, i.e. that features at

Figure 6.9: Information present in 3× 3 neighbourhoods is sufficient to dis-
tinguish materials. The top row shows three images drawn from two texture
classes, Limestone and Ribbed Paper. The bottom row shows scatter plots of
I(x) against I(x+(2, 2)). On the left are the distributions for Limestone and
Ribbed Paper 1 while on the right are the distributions for all three images.
The Limestone and Ribbed Paper distributions can easily be distinguished
and hence the textures can be discriminated from this information alone.
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many orientations and scales need to be extracted for successful classifica-

tion. However, the results on the CUReT, San Francisco and Microsoft Tex-

tile databases show that this hypothesis is evidently not true and that small

image patches contain enough information to discriminate between different

textures. The explanation for this is illustrated in figure 6.9. Three images

are selected from the Limestone and Ribbed Paper classes of the CUReT

dataset, and scatter plots of their grey level co-occurrence matrix shown for

the displacement vector (2, 2) (i.e. the joint distribution of the top left and

bottom right pixel in every 3 × 3 patch). Notice how the distributions of

the two images of Ribbed Paper can easily be associated with each other

and distinguished from the distribution of the Limestone image. Thus, 3× 3

neighbourhood distributions can contain sufficient information for successful

discrimination.

To take a more analytic example, consider two functions f(x) = A sin(ωf t+
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Figure 6.10: Similar large scale periodic functions can be classified using the
distribution of their derivatives computed from two point neighbourhoods.
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δ) and g(x) = A sin(ωgt+ δ), where ωf and ωg are small so that f and g have

large structure. Even though f and g are very similar (they are essentially

the same function at different scales) it can be shown that they are easily

distinguished by the Joint classifier using only two point neighbourhoods.

Figure 6.10 illustrates that while the intensity distributions of f and g are

identical, the distributions of their derivatives, fx and gx, are not. Since

derivatives can be computed using just two points, these two functions can

be distinguished by looking at two point neighbourhoods alone.

In a similar fashion, other complicated functions such as triangular and

saw tooth waves can be distinguished using compact neighbourhoods. Not

only that, the Taylor series expansion of a polynomial of degree 2N−1 imme-

diately shows that a [−N,+N ] neighbourhood contains enough information

to determine the value of the central pixel. Thus, any function which can

be locally approximated by a cubic polynomial can actually be synthesised

using a [−2, 2] neighbourhood (see figure 6.11 for example). Since, in general,

synthesis requires much more information than classification it is therefore

expected that more complicated functions can still be distinguished just by

looking at small neighbourhoods. This illustrates why it is possible to classify

very large scale textures using small patches.

Figure 6.11: Small neighbourhoods can be used to not just discriminate but
even synthesise large scale functions which can locally be approximated by
cubic polynomials.
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There also exist entire classes of textures which can not be distinguished

on the basis of local information alone. One such class comprises of textures

made up of the same textons and with identical first order texton statistics

but which differ in their higher order statistics. To take a simple example,

consider texture classes generated by the repeated tiling of two textons (a

circle and a square for instance) with sufficient spacing in between so that

there is no overlap between textons in any given neighbourhood. Then, any

two texture classes which differ in their tiling pattern but have identical

frequencies of occurrence of the textons will not be distinguished on the

basis of local information alone. However, the fact that classification rates of

nearly 98% have been achieved using extremely compact neighbourhoods on

three separate data sets indicates that such textures do not occur frequently

in the real world.

6.4.2 Filter banks are not superior to image patches

We now turn to the question of why filter banks do not provide superior clas-

sification as compared to their source image patches. To fix the notation, f+

and f− will be used to denote filter response vectors generated by projecting

N×N image patches i+ and i−, of dimension d = N 2, onto a lower dimension

Nf using the filter bank F. Thus,

f±Nf×1
= FNf×d i±d×1

(6.2)

In the discussion, we’ll focus on the properties of linear (including com-

plex) filter banks. This is not a severe limitation as most popular filters

and wavelets tend to be linear. Non linear filters can also generally be de-

composed into a linear filtering step followed by non linear post-processing.
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Furthermore, since one of the main arguments in favour of filtering comes

from dimensionality reduction, it will be assumed that Nf < d, i.e. the num-

ber of filters must be less than the dimensionality of the source image patch.

Finally, it should be clarified that throughout the discussion performance

will be measured by classification accuracy rather than the speed with which

classification is carried out. While the time complexity of an algorithm is

certainly an important factor and can be critical for certain applications, our

focus is on achieving the best possible classification results.

The main motivations which have underpinned filtering are: dimension-

ality reduction, feature extraction and biological plausibility, noise reduction

and invariance. Arguments from each of these areas are now examined to see

whether filter banks can lead to better performance than image patches.

Dimensionality reduction

Two arguments have been used from dimensionality reduction. The first,

which comes from optimal filtering, is that an optimal filter can increase the

separability between key filter responses from different classes and is therefore

beneficial for classification. The second argument, from statistical machine

learning, is that reducing the dimensionality is desirable because of better

parameter estimation (by improved clustering or maximised independence)

and also due to regularization effects which smooth out noisy filter responses

and prevent over-fitting. We examine both arguments in turn to see whether

such factors can compensate for the inherent loss of information associated

with dimensionality reduction.

Increasing separability Since convolution with a linear filter is equivalent

to linearly projecting onto a lower dimensional space, the choice of projection
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direction determines the distance between the filter responses. Suppose we

have two image patches i±, with filter responses f± computed by orthogonal

projection as f± = Fi± (where the rows of F span the hyperplane orthog-

onal to the projection direction). Then the distance between f+ and f− is

clearly less than the distance between i+ and i−. The choice of F affects

the separation between f+ and f−, and the optimum filter maximises it, in

the manner of a Fisher Linear Discriminant, but the scaled distance between

the projected points cannot exceed the original. This result holds true for

many popular distance measures including the Euclidean, Mahalanobis and

the signed perpendicular distance used by linear SVMs and related classifiers

(analogous results hold when F is not orthogonal). It is also well known [Ko-

havi and John, 1997] that under Bayesian classification, the Bayes error

either increases or remains at least as great when the dimensionality of a

problem is reduced by linear projection. However, the fact that the Bayes

error has increased for the low dimensional filter responses does not mean the

classification is necessarily worse. This is because of issues related to noise

and over-fitting which brings us to the second argument from dimensionality

reduction for the superiority of filter banks.

Improved parameter estimation The most compelling argument for the

use of filters comes from statistical machine learning where it has often been

noted that dimensionality reduction can lead to fewer training samples being

needed for improved parameter estimation (better clustering) and can also

regularise noisy data and thereby prevent over-fitting. The assumptions un-

derlying these claims are that textures occupy a low dimensional subspace

of image patch space and if the patches could be projected onto this true

subspace (using a filter bank) then the dimensionality of the problem would
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be reduced without resulting in any information loss.

While these are undoubtedly sound claims there are three reasons why

they might not lead to the best possible classification results. The first is due

to the great difficulty associated with identifying a texture’s true subspace

(in a sense, this itself is one of the holy grails of texture analysis). More often

than not, only approximations to this true subspace can be made and these

result in a frequent loss of information when projecting downwards.

The second counter argument comes from the recent successes of Kernel

methods. Dimensionality reduction is necessary if one wants to accurately

model the true texture PDF. However, Kernel methods have demonstrated

that for classification purposes a better solution is to actually project the

data non-linearly into an even higher (possibly infinite) dimensional space

where the seperability between classes is increased. Thus the emphasis is

on maximising the distance between the classes and the decision boundary

rather than trying to accurately model the true texture PDF (which, though

ideal, is impractical). Implemented properly, the kernel trick can lead to both

improved classification and generalisation without much associated overhead

and with none of the associated losses of downward projection. The reason

this argument is applicable in our case is because it can be shown that χ2,

with some minor modifications, can be thought of as a Mercer kernel [Wall-

raven et al., 2003]. Thus, the patch based classifiers take the distribution of

image patches and project it into the much higher χ2 space where classifica-

tion is carried out. The filter bank based VZ algorithm does the same but

it first projects the patches onto a lower dimensional space which results in

a loss of information. This is the reason why the performance of filter banks

studied here is consistenly inferior to their source patches.

The third argument is an engineering one. While it is true that clus-
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Figure 6.12: Incorrect parameter estimation can still lead to good classi-
fication results: the true likelihoods of two classes are shown in (a) along
with the MAP decision boundary obtained using equal priors (dashed red
curves). In (b) the estimated likelihoods have gross errors. The estimated
means have relative errors of 100% and the covariances are estimated as be-
ing diagonal leading to a very different decision boundary. Nevertheless the
expected classification error is just 1.4% and thus 98.6% of the data will be
classified correctly despite the poor parameter estimation.

tering is better and that parameters are estimated more accurately in lower

dimensional spaces, [Domingos and Pazzani, 1997] have shown that even

gross errors in parameter estimation can have very little effect on classifi-

cation. This is illustrated in figure 6.12 which shows that even though the

means and covariance matrices of the true likelihood are estimated inccr-

rectly, 98.6% of the data is still correctly classified. This is supported by

the results plotted in figure 6.4 which show that classification obtained by

clustering 441 dimensional 21 × 21 patches gives better results than those

obtained by clustering the 8 dimensional MR8 filter responses with equiva-

lent support (in fact, 21× 21 patches are also better than the 9 dimensional

3 × 3 patches even though fewer measurements are available for accurate

parameter estimation in the higher dimensional space). Another interest-

ing result, which supports the view that accurate parameter estimation is
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not necessary for accurate classification, is obtained by selecting the texton

dictionary at random (rather than via K-Means clustering) from amongst

the filter response vectors. In this case, the classification result for VZ MR8

drops by only 5% and is still well above 90%. A similar phenomenon was

observed by [Georgescu et al., 2003] when Mean-Shift clustering was used to

approximate the filter response PDF. Thus the loss due to inaccurate param-

eter estimation in high dimensions might still be less than the loss associated

with projecting into a lower dimensional subspace even though clustering

may be improved.

Feature extraction

The main argument from feature extraction is that many features at multi-

ple orientations and scales must be detected accurately for successful classi-

fication. Furthermore, studies of early vision mechanisms and pre-attentive

texture discrimination have suggested that the detected features should look

like edges, bars, spots and rings. These have most commonly come to be

implemented using Gabor or Gaussian filters and their derivatives. However,

results from the previous sections have shown that the multi-scale, multi-

orientation large support filter bank argument is not valid. Small image

patches can also lead to successful classification. Furthermore, while an op-

timally designed bank might be maximising some measure of seperability in

filter space, it is hard to argue that “off the shelf” filters such as BFS, LM

or S (whether biologically motivated or not) are the best for any given clas-

sification task. In fact, as has been demonstrated, a classifier which learns

from all the input data present in an image patch should do better than one

which depends on these pre-defined features bases.
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Noise reduction and invariance

Most filters have the desireable property that, because of their large smooth-

ing kernels (such as Gaussians with large sigma), they are fairly robust to

noise. This property is not shared by image patches. However, pre-processing

the data can solve this problem. For example, the classifiers developed in

this chapter rely on vector quantisation of the patches into textons to help

cope with noise. This can actually provide a superior alternative to filtering,

because even though filters reduce noise, they also smooth over all the high

frequency information present in the signal. Yet, as has been demonstrated

in the 3 × 3 patch case, this information can be beneficial for classification.

Therefore, if image patches can be denoised by pre-processing or quantiza-

tion without the loss of high frequency information then they should provide

a superior representation for classification as compared to filter banks.

Virtually the same argument can be used to build invariance into the

patch representation without losing information by projecting onto lower di-

mensions. For example, patches are pre-processed and made to have zero

mean and unit standard deviation to achieve invariance to affine transforma-

tions in the illuminant’s intensity. Similarly, to achieve rotational invariance,

the dominant orientation can be determined and then corrected for by re-

duction to a canonical frame. However, this does have the drawback of

being potentially unstable if the dominant direction cannot be determined

accurately. For instance, corners have two dominant orientations and, in

the presence of noise, can be transformed incorrectly upon reduction to the

canonical frame. One solution to the problem could be to discard such am-

biguous patches altogether. Alternatively, many transformed copies of the

patch (for instance, all rotated versions) can be included in the training set

to overcome this problem.
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6.5 Conclusions

Filter banks and wavelets have become ubiquitous in the texture classification

literature over the last decade or so. Though there are many reasons for

their popularity their use in particular classification problems has not always

been justified. The work in this chapter, following that of Efros and Leung,

demonstrates that for tasks such as synthesis and classification, filter banks

are sufficient but not necessary and that their performance while tackling

either task is inferior.

Indeed, filter banks have a number of disadvantages compared to smaller

image patches: first, the large support they require means that far fewer

samples of a texture can be learnt from training images (there are many

more 3×3 neighbourhoods than 50×50 in an 100×100 image). Second, the

large support is also detrimental in texture segmentation, where boundaries

are localised less precisely due to filter support straddling region boundaries;

A third disadvantage is that the blurring (e.g. Gaussian smoothing) in many

filters means that fine local detail can be lost. This is another reason why

the image patch based classifier achieves superior results as compared to the

VZ algorithm using the large scale MR8 filter bank.

The disadvantage of the patch representation is the quadratic increase

in the dimension of the feature space with the size of the neighbourhood.

This problem may be tackled by using a multi-scale representation. For

instance, an image pyramid could be constructed and patches taken from

several layers of the pyramid if necessary. An alternative would be to use large

neighbourhoods but store the pixel information away from the center at a

coarser resolution. Finally, a scheme such as Zalesny and Van Gool’s [Zalesny

and Van Gool, 2000] could be implemented to determine which long range

interactions were important and use only those cliques.
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Before concluding, it is worth while to reflect on how the image patch

algorithms and their results relate to what others have observed in the field.

In particular, [Fowlkes et al., 2003, Levina, 2002, Randen and Husoy, 1999]

have all noted that in their respective texture analysis tasks, filters with small

support have outperformed the same filters at larger scales. Thus, there

appears to be an emerging consensus that small support is not necessarily

detrimental to performance.

Another interesting fact is that the “new” image patch algorithms, such

as the synthesis method of Efros and Leung and the Joint classifier developed

in this chapter, have actually been around for quite a long time. For instance,

Efros and Leung note a strong resemblance between their algorithm and that

of [Garber, 1981]. Furthermore, both the Joint classifier and Efros and Le-

ung’s algorithm are near identical in spirit to [Popat and Picard, 1993]. The

relationship between the Joint classifier and Popat and Picard’s algorithm is

particularly close as both use clustering to learn a distribution over image

patches which then forms a model for novel texture classification. Apart

from the choice of neighbourhoods, the only minor differences between the

two methods are in the representation of the PDF and the distance measure

used during classification. Popat and Picard use a Gaussian mixture model

with diagonal covariances to represent their PDF while the texton represen-

tation used in this thesis can be thought of as fitting a spherical Gaussian

mixture model via K-Means. During classification, Popat and Picard use a

näıve Bayesian method which, for the Joint classifier, would equate to using

nearest neighbour matching with KL divergence instead of the χ2 statistic

(as shown in chapter 5).

Certain similarities also exist between the Joint classifier and the MRF

model of [Cross and Jain, 1983]. In particular, Cross and Jain were the
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Original Synthesised

Figure 6.13: Synthesis results from [Popat and Picard, 1993].

first to recommend that χ2 over the distribution of central pixels and their

neighbours could be used to determine the best fit between a sample texture

and a model. Had they actually used this for classification rather than just

model validation of synthesised textures, the two algorithms would have been

very similar apart from the functional form of the PDFs learnt (Cross and

Jain treat the conditional PDF of the central pixel given the neighbourhood

as a unimodal binomial distribution).

Thus, alternative approaches to filter banks have been around for quite

some time. Perhaps the reason that they didn’t become popular then was

due to the great computational costs they required to achieve good results.

For instance, the synthesis results of [Popat and Picard, 1993] are of a poor

quality which is perhaps why their theory didn’t attract the attention it

deserved. Figure 6.13 shows Popat and Picard’s result obtained using a

dictionary of 2048 textons and with a 14 pixel, causal image patch applied

across consecutive scales. The same texture has been synthesised in figure 6.5

using our image patch representation with 300 textons and 11 × 11 neigh-

bourhoods [Varma and Zisserman, 2003]. The improved results are due to

the significantly larger neighbourhoods used – an option perhaps not avail-

able to [Popat and Picard, 1993] in their day. However, with computational

power being readily accessible today, MRF and image patch methods are
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outperforming filter bank based methods. Though it remains to be seen

whether the trend will be reversed if the practical classification problems be-

ing attempted become much more complex without a matching increase in

processor speeds and availability – for example, when moving to real time or

embedded systems.

To conclude, in this chapter we have introduced a texton based image

patch representation for textures and demonstrated that superior classifica-

tion results can be obtained by using compact, local neighbourhoods and

without the use of large scale filter banks.
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Chapter 7

Estimating Illumination

Direction

This chapter studies the the problem of estimating the illuminant’s direction

from images of textured surfaces. The goal is to overcome our lack of prior

knowledge and develop a robust method which can be used to infer the

illuminant’s azimuthal angle and thereby aid future classification.

The problem is considered in a statistical framework unlike the more tra-

ditional geometric formulations, Given an isotropic, Gaussian random surface

with constant albedo, Koenderink and Pont [Koenderink and Pont, 2003] de-

veloped a theory for recovering the illuminant’s azimuthal angle from a single

image of the texture formed under a Lambertian model. In this chapter, the

theory is extended to deal with cases of spatially varying albedo. This ex-

tension also allows the theory to better handle real world phenomenon such

as shadows, specularities, inter-reflections, etc.

165
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7.1 Introduction

This thesis has not explicitly considered how to overcome the lack of prior

knowledge about viewpoint and illumination conditions while attempting

classification so far. Using rotation and scale invariant descriptors has en-

abled the system to implicitly cope with viewpoint changes to a certain ex-

tent. However, as figure 1.14 shows, illumination changes can also cause

significant variations in the appearance of a material. Thus an algorithm ca-

pable of detecting the illuminant’s direction can be used to help model such

changes and provide explicit information about the illumination properties

of the scene. In this chapter, we take a first step towards developing such an

algorithm and address the problem of estimating the illuminant’s azimuthal

angle ψ from images of textured rough surfaces (see figure 7.1).

Figure 7.1: The goal is to estimate the illuminant’s azimuth ψ from images
of textured rough surfaces.

It should be stressed that the aim is not to build an illumination esti-

mation algorithm in itself. If this were the case, one could have taken any
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of the successful classification systems of the previous chapters, used it to

determine the closest model in the training set and returned the model’s il-

lumination direction as an approximation of the illumination direction of the

given test image. On the contrary, our goal is to ultimately use the illumina-

tion estimation algorithm to improve classification. And, in particular, use

it in situations where only a few training models are available in which case

the direction approximation returned by the classification method would be

very crude and often inaccurate (as turns out to be the case on tests on the

CUReT database).

Traditionally, techniques from Shape from Shading have been used for

estimating the illuminant’s direction [Brooks and Horn, 1985,Lee and Rosen-

feld, 1985,Nillius and Eklundh, 2001,Pentland, 1982,Vega and Yang, 1994,

Yang and Yuille, 1991,Zheng and Chellappa, 1991]. Most of these techniques

assume a Lambertian [Foley et al., 1990] image formation model and try to

simultaneously recover both shape, i.e. the surface height map or the surface

normals, and the direction of the light source. However, this is an ill posed

problem and many constraints have to be imposed in order to find a rea-

sonable solution. Some of the most common constraints are that the albedo

must be constant and that the surface be smooth or the normals integrable.

Alternatively, other methods focus on local estimates or the occluding con-

tour but, once again, have to impose very similar constraints to determine

the illuminant’s direction.

Recently, methods have been developed which specifically exploit the sta-

tistical nature of rough textures. [Chantler et al., 2002b, Chantler et al.,

2002a] have shown that the variance of filter responses obtained from a tex-

tured image lie on Lissajous’ ellipses as a function of the illuminant’s az-

imuthal angle. Given three reference images of the texture, taken under
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fixed viewpoint and illuminant elevation, it is possible to determine the el-

lipse. This ellipse can then be used to read off the illuminant’s azimuthal

angle for any novel image of that texture. Similarly, [Koenderink and Pont,

2003] develop a statistical theory based on second order moments of the sur-

face gradients to recover the illuminant’s azimuth from a single view taken

under orthographic projection.

However, none of these methods has translated into a practical tool to as-

sist in classification. The reason is primarily due to the imposition of strong

constraints which are violated in most real world situations. In particular,

the assumption that the texture must have constant albedo is severely re-

strictive and limits the applicability of such methods. In section 7.2, we take

a first step towards removing this restriction by generalizing Koenderink and

Pont’s theory to the case where the albedo can be thought of as a spatially

varying random variable drawn from a log-normal distribution [Evans et al.,

2000]. The extension also accommodates, in certain cases, the effects of fac-

tors such as attached shadows, specularities and other deviations from the

perfect Lambertian model. This permits the application of the theory to

all 5612 images chosen from the CUReT database and it is demonstrated in

section 7.3 that extremely good results are achieved on real world, uncali-

brated images taken under a variety of conditions. Next, section 7.4 explores

how the theory can be further generalized to take into account arbitrarily

varying albedo if extra information is present in the form of an additional

reference image. The theory is then tested in section 7.5 on the Heriot-Watt

TextureLab database, where additional reference images are available, and

it is demonstrated that superior results are achieved with the new formula-

tion. In section 7.6 the advantages of using local regions to form estimates

of the azimuthal angle are investigated. Finally, section 7.7 concludes with a
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discussion on the implications of automatically determining the illuminant’s

azimuth for resolving the Generalized Bas-Relief ambiguity.

7.2 Estimating the light source azimuth

This section develops the basic theory for recovering the illuminant’s az-

imuth from a single texture image. We consider the case where the un-

derlying texture can be modelled as a Gaussian, random, rough surface.

None of the parameters of the surface, the mean, variance or even the auto-

correlation function, need actually be known. Instead by making general

assumptions about the surface height distribution, the second order statis-

tics of the surface derivatives can be used to robustly recover the light

source azimuth. In particular, it will be shown that the structure tensor

S = < (∇ log I)(∇ log I)T > has its larger eigenvector v1 pointing in the

direction of the illuminant’s azimuth, i.e. v1 =
[

cosψ
sinψ

]

from which ψ can be

recovered. The derivation will follow principally along the lines of [Koen-

derink and Pont, 2003].

7.2.1 Theoretical assumptions and their validity

Under the basic assumptions that the underlying model which produced the

textured image has (a) an isotropic, Gaussian random rough surface with

shallow relief viewed orthographically, (b) an albedo which is also isotropic

but distributed log-normally, (c) an illuminant whose elevation ν is high as

compared to the surface tangent plane, and (d) a perfect Lambertian image

formation model without shadowing, specularities or inter-reflections, it will

be shown that the illuminant’s azimuthal angle ψ can be recovered from the

largest eigenvector of the structure tensor S.



170 CHAPTER 7. ESTIMATING ILLUMINATION DIRECTION

As these assumptions might appear to be overly restrictive, it will be

demonstrated that the theory holds even for cases when the textures deviate

strongly from this model. For example, the results are empirically valid for

elevations as small as ν = 5◦ and when there are significant shadows. We will

explain why this might be the case by considering the situation where the

effects of shadowing, specularities, inter-reflections etc. can be incorporated

into the albedo map. It should also be noted that requiring the surface have a

Gaussian height distribution or the albedo a log-normal distribution are not

major restrictions. [Thomas, 1998] indicates that many naturally occurring

rough surfaces can be treated as random variables drawn from a Gaussian

distribution. Figure 7.2 shows some synthesised examples of homogenous,

anisotropic and rotationally symmetric rough surfaces with Gaussian height
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Figure 7.2: Synthetic Gaussian random rough surfaces generated using (7.5)
with a corresponding 1D horizontal slice and surface height distribution.
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profiles. Similarly, requiring that the albedo be log-normal distributed is

a plausible assumption easily satisfied by many different albedo maps (see

figure 7.3).

1 2 3

5 25 22

46 52 56

Figure 7.3: On the left are images of nine different materials from the CUReT
database. Treating each of the images as an albedo map, the graph on
the right plots its distribution of pixel intensities. The distributions can be
modelled very accurately by log-normal PDFs.

7.2.2 Derivation of the basic theory

If a textured surface is imaged under the Lambertian model [Foley et al.,

1990], then the image intensities are independent of the viewing direction

and depend on only the angle between the surface normal at each point and

the light source direction. When there is a single, collimated, parallel light

source, relatively high enough from the surface tangent plane so that shadows

can be neglected, the image intensities are given by

I(x, y) =
ρ(x, y)Lλ sin ν
√

1 + h2
x + h2

y

[1− cot ν(hx cosψ + hy sinψ)] (7.1)

where L = Lλ[cos ν cosψ, cos ν sinψ, sin ν] is the light source vector with

elevation ν and azimuthal angle ψ, h(x, y) is the Monge patch parameter-
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ization of the surface height with partial derivatives hx(x, y) and hy(x, y),

and ρ(x, y) is the spatially varying surface albedo. Thus only a very simple

image formation model is being considered and effects due to specularities,

inter-reflections and shadows are neglected for the moment. Yet, as will be

demonstrated, even this simple analysis can give very good results on real

world datasets.

If the surface has shallow relief then the factor in the denominator can

be ignored as hx, hy � 1. Following [Koenderink and van Doorn, 2002,

Koenderink and Pont, 2003], we work with the log intensity distribution

given by

log I(x, y) = log(ρLλ sin ν)− cot ν(hx cosψ + hy sinψ) (7.2)

where the fact that cot ν is small has been used to form the truncated Taylor

series expansion log(1 − x) = −x. Denoting LI = log I, s = sinψ, c = cosψ

and taking partial derivatives gives

LIx(x, y) =
ρx
ρ
− cot ν(chxx + shxy) (7.3)

LIy(x, y) =
ρy
ρ
− cot ν(chxy + shyy) (7.4)

Generic information about the surface height and albedo distributions

is now needed in order to proceed further with the analysis. In [Longuet-

Higgins, 1957,Berry and Hannay, 1977], it is shown that a Gaussian random

rough surface can be generated by the interaction of a number of waves at

different frequencies and orientations. Thus,

h(x, y) =
∑

n

∑

m

hnm cos(nx+my) (7.5)



7.2. ESTIMATING THE LIGHT SOURCE AZIMUTH 173

where n,m ∈ Z and hnm are random variables which determine the auto-

correlation of the rough surface. Figure 7.2 shows some sample Gaussian

random rough surfaces which can be expressed as (7.5). Since a Gaussian

surface must have an equal number of protrusions and indentations, the first

order statistics such as the mean will not reveal any information about the

illuminant’s azimuth (because the bright image regions will cancel out the

dark image regions). Mathematically, < LIx > and < LIy > should vanish

as the expected values of all partial derivatives of h must be equal to zero.

Hence we turn to the square terms < LI2
x >, < LI2

y > and < LIxLIy >

which become

< LI2

x > = < (ρx/ρ)
2 >

+ cot2 ν < (chxx + shxy)
2 > (7.6)

−2 cot ν(c < ρxhxx/ρ > +s < ρxhxy/ρ >)

To account for the albedo, a similar kind of assumption is made about

its distribution. If the albedo can be modelled as a random variable with a

log-normal distribution [Evans et al., 2000], then log ρ should also be of the

form (7.5) and therefore the third term in (7.6) must vanish as the product of

any odd and even numbered derivatives has zero expected value. Denoting,

Ax =< (ρx/ρ)
2 > we then have,

< LI2

x > = Ax + cot2 ν < (chxx + shxy)
2 > (7.7)

< LI2

y > = Ay + cot2 ν < (chxy + shyy)
2 > (7.8)

where < LI2
y > has been obtained by a similar treatment. The expression
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for < LIxLIy > is also very similar

<LIxLIy>= Axy + cot2 ν < (chxx + shxy)(chxy + shyy)>

where Axy =< ρxρy/ρ
2 >.

The expectations of the height derivatives now need to be evaluated.

Some straight forward trigonometry and integration yields

< h2

xx > = (1/2)
∑

n

∑

m

n4h2

nm

< h2

yy > = (1/2)
∑

n

∑

m

m4h2

nm

< h2

xy > = (1/2)
∑

n

∑

m

n2m2h2

nm =< hxxhyy >

< hxxhxy > = (1/2)
∑

n

∑

m

n3mh2

nm

< hyyhxy > = (1/2)
∑

n

∑

m

nm3h2

nm (7.9)

At this point, there are more unknowns than equations and therefore

the system must be constrained further for the light source azimuth to be

recovered. One way of reducing the number of free variables is by constraining

the underlying surface and albedo. In the case that both are isotropic, the

expectations in (7.9) can be greatly simplified to











< h2
xx > < hxxhyy > < hxxhxy >

< hyyhxx > < h2
yy > < hyyhxy >

< hxyhxx > < hxyhyy > < h2
xy >











= H











3 1 0

1 3 0

0 0 1











(7.10)
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while the albedo expectations simplify to





Ax Axy

Ayx Ay



 = A





1 0

0 1



 (7.11)

where H and A are constants which depend on the surface height and albedo

of the textured material (for instance, A = 0 for constant albedo textures).

Substituting these values back into the expressions for < LI2
x >, < LI2

x >

and < LIxLIy > gives

< LI2

x > = A+H cot2 ν(3 cos2 ψ + sin2 ψ)

< LI2

y > = A+H cot2 ν(cos2 ψ + 3 sin2 ψ)

< LIxLIy > = H cot2 ν(1 + 1) sinψ cosψ

There are now exactly three equations in three unknowns and therefore it

is possible to recover the illuminant azimuth ψ from the eigenvectors of the

structure tensor [Koenderink and Pont, 2003] defined as

S = < ∇LI ∇LIT > =





< LI2
x > < LIxLIy >

< LIxLIy > < LI2
y >



 (7.12)

In the present case, the structure tensor turns out to have a very simple form

S = AI +H cot2 ν





2 + cos 2ψ sin 2ψ

sin 2ψ 2− cos 2ψ



 (7.13)

where I is the 2×2 identity matrix. The larger eigenvalue and corresponding



176 CHAPTER 7. ESTIMATING ILLUMINATION DIRECTION

eigenvector of the structure tensor are given by

λ1 = A+ 3H cot2 ν ⇒ v1 =





cosψ

sinψ



 (7.14)

while the smaller eigenvalue and eigenvector are given by

λ2 = A+H cot2 ν ⇒ v2 =





cos(ψ + π/2)

sin(ψ + π/2)



 (7.15)

Thus, v1 points in the direction of the illuminant’s azimuthal component and

represents the desired solution. However, note that there is an ambiguity of

180◦ in the recovered angle as S depends on 2ψ rather than ψ.

The coherence of the structure tensor S is defined to be

coh =
λ2

1 − λ2
2

λ2
1 + λ2

2

(7.16)

=
H cot2 ν(2A+ 4H cot2 ν)

A2 +H cot2 ν(4A+ 5H cot2 ν)
(7.17)

and it gives a measure of the stability of the solution. From (7.17) it can be

seen that the coherence depends upon both ν and A and it must always be

less than or equal to 0.8. For example, when A2 is negligible as compared

to the second term in the denominator, the expression for the coherence

simplifies to

coh =
2A+ 4H cot2 ν

4A+ 5H cot2 ν
(7.18)

which varies between 0.5 and 0.8 depending on the elevation ν. Of course, if

A2 is not negligible then the coherence can be lower still.
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7.2.3 Deviations from the perfect Lambertian model

The model up till now has been derived under the assumption of perfect

Lambertian reflectance without any shadowing (see figure 7.4), specularities,

inter-reflections etc. However, in general, it is not possible to distinguish

these effects from albedo variations given just a single image (unless there is

prior information available) [Forsyth and Zisserman, 1991, Koenderink and

Van Doorn, 1983]. For example, it is not possible to tell apart dark regions

due to shadows from dark regions due to low albedo from only one image.

Therefore, it might be possible to model these effects as albedo variations as

long as the distribution remains roughly log-normal (the log-normal distribu-

tion can accommodate a large number of low intensity shadow regions in the

bulk of the distribution with the specularities fitting into the tail). In such a

situation, (7.14), (7.15) and (7.17) will still hold and the largest eigenvector

will point in the direction of the azimuth. However, A will now become a

function of both ν and ψ as well as the camera position and therefore the

coherence is no longer expected to be a monotonic function of the elevation.

A C CA

illumination direction

Figure 7.4: A indicates an attached (self) shadow boundary, and C a cast
shadow boundary. Significant cast shadows can suddenly appear below a
certain elevation for rough surfaces.
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If we were to focus on shadowing as the major source of deviation from the

the model, then depending on how quickly A increases with decreasing ν, as

compared to H cot2 ν, the coherence curve can either increase or decrease.

It can also do both if the shadowing pattern changes after a certain eleva-

tion and one can expect kinks in the graph. Figure 7.5 plots some sample

scenarios.
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Figure 7.5: The variation in coherence with elevation in the presence of shad-
ows. The curve can change dramatically if the shadowing pattern changes
after a certain elevation. This can also cause a jump in the curve, for exam-
ple, when significant cast shadows suddenly appear below a certain elevation.
It should be noted that these are just a few sample curves from the set of
all such possible. Each can vary considerably depending on how shadowing
influences the albedo parameter A.

7.3 Single image experiments and compar-

isons

It is interesting to note that the eigenvectors recovered in (7.14) and (7.15)

are identical to those found by Koenderink and Pont. Thus, even though
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their theory was derived under the assumption of a constant albedo map,

their method should hold for a much wider range of textures. However, since

a constant albedo map implies A = 0, their model expects that the measured

coherence should always equal 0.8 and should not change with varying eleva-

tion, azimuth or texture sample. The theory derived here predicts otherwise.

For almost constant albedos, i.e. small A, (7.18) expects the coherence to lie

between 0.5 and 0.8 with lower values being expected for larger variations in

albedo. These predictions match very well with the “deviations” from the

ideal as measured by Koenderink and Pont.

In the case of a true Gaussian random rough surface with painted white

albedo, Koenderink and Pont report that the azimuth is estimated correctly

within a few degrees but “the coherences are significantly lower” and vary

between 0.4 and 0.7 with changing elevation. Similarly, on a sample texture

from the CUReT database, the illuminants azimuth is detected to within a

degree of the ground truth (ψ = 0) but the coherences are again found to be

slightly lower with the 25 to 75 percentiles being 0.53 to 0.78. Both these

results are regarded as anomalies by Koenderink and Pont while they are

predicted almost exactly by (7.17) and (7.18).

Even though the current model has been derived by assuming Gaussian

and log-normal distributions, it may also hold to some degree for other distri-

butions for which the appropriate expected values cancel out. To determine

how well the model copes with various materials, albedos and height distri-

butions, it is applied to all the textures present in the CUReT database. We

use the same set of 5612 cropped images that have been used in the classifi-

cation experiments so far. In order to verify the robustness of the model, the

images are not photometrically or geometrically calibrated but instead just

converted to grey scale after which their raw pixel intensities are used.
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Figure 7.6: The top row shows some sample CUReT textures from a fronto-
parallel view. For each material the middle row plots the error in estimating
ψ in degrees as the illuminant’s elevation varies from 11.25◦ to 78.75◦ (the
viewing angle also varies but is always within 15◦ of the surface plane normal).
The associated coherence values are plotted in the bottom row. The samples
are: Polyester (texture number 02), Terrycloth (03), Rough Plastic (04),
Sandpaper (06), Plaster A (10), Plaster B (11), Quarry Tile (25), and White
Bread (52). Note that for each sample, derivatives are computed at various
scales and the best result reported. No photometric or geometric calibration
has been done and all images are converted to grey scale.

Figure 7.6 shows the results of the algorithm on some CUReT textures.

For each texture, 7 images are chosen for which the viewing angle is within

15◦ of the surface plane normal. The value of the illuminant’s azimuth is

estimated using (7.14) and the estimation error in degrees is plotted as a

function of ν in the middle row. The error is less than a few degrees even

though the view is not perfectly normal, the albedo not constant and the

surface not necessarily isotropic Gaussian. The results are valid even in the

presence of shadows for the smaller values of elevation. In the bottom row,

the associated coherences have also been plotted as a function of ν. As can

be seen, they are not always equal to the constant value 0.8 determined by

Koenderink and Pont but vary with ν and albedo as predicted by the theory

developed here. The jumps in the curves are most probably due to shadows
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introduced by the change in elevation but could also be due to other effects

caused by changes in viewpoint.

Next, the method is applied to all 5612 images selected from the database

and the light source azimuth estimated. As can be expected some results will

not be very good due to the oblique viewpoint and the strong deviation of

the textures from the assumptions. Nevertheless, the azimuth is recovered

to within a few degrees for a majority of the cases. Figure 7.7 is a plot of the

estimation error versus the number of images having that error. For 1475

images (more than 25%) the azimuth is estimated to within an accuracy of

1◦ while 3255 images (roughly 58% of those selected) have an error less than

5◦.
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Figure 7.7: A count of the azimuth estimation errors (in degrees) for all
5612 images in the CUReT database. Results are given for the best scale for
computing derivatives.

However, the algorithm does have a source of error which could be bias-

ing these results. When a texture is strongly anisotropic, the perpendicular

partial derivative dominates the structure tensor and forces the estimated

illuminant to lie in its direction irrespective of the true azimuthal angle.

For example, the iso-illumination contours for a texture with translational
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Figure 7.8: The model can appear to be working well even though it is being
fooled by orientation effects. As long as the illuminant’s true azimuth is
around 0◦ the algorithm returns good results (solid red curve in the graphs in
the middle row) for Corduroy (42), Linen (44) and Corn Husk (51). However,
the estimates for all other azimuthal angles are very poor as can be seen by
the dashed curve in the same graphs. The fact that the coherence is greater
than 0.8 can be used to flag this error.

symmetry are straight lines parallel to the translation direction. Hence the

derivatives in this direction will be negligible as compared to the perpendic-

ular derivatives. So, for images which are vertically oriented (see figure 7.8),

the x derivative becomes very large and forces the structure tensor to assume

the form

S = H





1 ε

ε ε



⇒ λ1 = 1, λ2 = 0,v1 =





1

0





and thus the estimated azimuth is 0◦ irrespective of the actual direction of
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the illuminant. A similar problem exists for horizontal textures and ψ =

90◦. And since most illuminant directions in the CUReT database are either

ψ = 0◦, ψ = 90◦ or ψ = 180◦ it is difficult to tell whether the algorithm

is working properly or giving erroneous results because of the dominance of

oriented edges. However, in these cases the coherence will be greater than 0.8

and can therefore be used to flag errors. Figure 7.8 illustrates this effect. The

algorithm seems to be working well as the estimated azimuth appears to lie

very close to ground truth for ψ = 0◦. However, in reality, it is the orientation

effects which are causing this and once the true illuminant direction moves

away from 0◦ the errors become very large. The fact that the coherences are

greater than 0.8 can be used to flag this occurrence.

Nevertheless, the model appears to be quite robust when its basic condi-

tions are met. For example, for Plaster A (texture number 10) which appears

to be isotropic, the azimuth was estimated to within 5◦ nearly 90% of the

times, irrespective of viewpoint and shadowing. Thus, even though there is

room for improvement, the simple model derived without taking into account

many physical phenomenon still appears to work quite well.

7.4 Estimation from two images

There are often cases when multiple images are available of a texture taken

from the same viewpoint but with varying illumination. Photometric Stereo

techniques rely on such data for example. In these cases, it is possible to use

the extra information available to lift some of the restrictions imposed on

the model in section 7.2. In particular, it is possible to have freely varying

albedo and, in this section, a theory for estimating the illuminant’s azimuth

under such circumstances is developed.
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Suppose there are available two registered images I1 and I2 imaged by

varying the illuminant’s azimuth. Then, under the Lambertian model, the

image intensities are given by

Ii(x, y) =
ρ(x, y)Lλ sin ν
√

1 + h2
x + h2

y

[1− cot ν(hx cosψi + hy sinψi)]

Note that by taking the ratio of the two images, it is possible to im-

mediately get rid of both the albedo variation as well as the normalising

constant in the denominator. Thus, it is no longer necessary to make the

explicit assumption that the surface has shallow relief in order to remove

the
√

1 + h2
x + h2

y factor. Furthermore, the albedo can be allowed to vary

arbitrarily as it has no influence on the ratio. Taking logarithms and again

making use of the truncated Taylor series expansion gives

LR = log(
I1
I2

) (7.19)

= cot ν[hx(cosψ2 − cosψ1) + hy(sinψ2 − sinψ1)] (7.20)

Denote C = cosψ2 − cosψ1 and S = sinψ2 − sinψ1. Then

LR = cot ν(Chx + Shy)

⇒ LRx = cot ν(Chxx + Shxy)

⇒ LRy = cot ν(Chxy + Shyy) (7.21)

Again, < LRx > and < LRy > are not expected to contain any information

and their values equal zero. Instead, one must look at the second order

terms < LR2
x >, < LR2

y > and < LRxLRy >. If the surface is isotropic and

Gaussian, then < h2
xx >=< h2

yy >= 3H,< h2
xy >=< hxxhyy >= H while all
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other expectations are zero. Therefore,

< LR2

x > = H cot2 ν(3C2 + S2)

< LR2

y > = H cot2 ν(C2 + 3S2)

< LRxLIy > = H cot2 ν2CS (7.22)

and the structure tensor is given by

S = H cot2 ν





3C2 + S2 2CS

2CS C2 + 3S2



 (7.23)

Making use of the trigonometric identities cos (ψ2 ± ψ1) = cosψ2 cosψ1 ∓
sinψ2 sinψ1, sin (ψ2 ± ψ1) = sinψ2 cosψ1±cosψ2 sinψ1 and performing some

careful, but straight forward, algebra yields

S = α





2− cos(ψ1 + ψ2) − sin(ψ1 + ψ2)

− sin(ψ1 + ψ2) 2 + cos(ψ1 + ψ2)



 (7.24)

where

α = 4H cot2 ν sin2

(

ψ2 − ψ1

2

)

(7.25)

The eigenvalues of the structure tensor are now λ1 = 3α and λ2 = α while

the larger eigenvector is

v1 =





− sin(ψ1 + ψ2)

1 + cos(ψ1 + ψ2)



 (7.26)

from which it is possible to recover the joint angle ψ1 + ψ2.
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The coherence of the structure tensor now becomes

coh =
λ2

1 − λ2
2

λ2
1 + λ2

2

= 0.8 (7.27)

7.5 Experimental results for two images

The validity of the theory developed in the previous section is now assessed

on sample textures from the Heriot-Watt TextureLab database [Wu and

Chantler, 2003]. The database is described in subsection 2.3.4 of the litera-
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Figure 7.9: Estimating the illuminant’s azimuth for samples in the Heriot-
Watt TextureLab database. For each material, the image at ψ = 0◦ is chosen
as the reference image. The solid blue curves (middle row) then represent the
error in estimating ψ in degrees for all the remaining images using (7.26). The
dashed red curves represent the estimation error as measured using (7.14).
The bottom row is a plot of the associated coherences. Derivatives are com-
puted at various scales and the best results reported for both methods.
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ture survey. It has textures representing various kinds of materials: isotropic,

oriented (in both surface and albedo), rough, etc. Each material has been

imaged under a fixed viewpoint. The illuminant’s elevation is also fixed at

ν = 45◦ but the azimuth varies between ψ = 0◦ and ψ = 315◦.

To test the theory, samples from the database are taken whose surface

might be modelled as isotropic and Gaussian but for which the albedo varies

considerably. For each sample, the image taken at ψ = 0◦ is retained as the

reference image while (7.26) is then used to recover the azimuthal angle for

all the rest. Figure 7.9 is a plot of the estimation error for four samples,

AN4, TL2, TL3 and TL6, each of which has signification variation in its

albedo. The middle row shows plots of the estimation error versus ψ for the

remaining images. The solid blue curves represent the errors in the angle

estimated using (7.26) and generally tend to be much lower than the dashed

red curve representing the error in estimation due to (7.14). The bottom row

is a plot of the associated coherences. Even though (7.27) predicts that the

coherences should now equal 0.8 this is clearly not the case. The variation is

most probably due to deviations from the model in terms of shadowing.

7.6 Local estimation

Even though the methods developed in sections 7.2 and 7.4 appear to cope

fairly well with deviations in the model, there are often cases where a few bad

measurements can adversely affect the recovery of the azimuthal angle. It is

therefore desirable to estimate the illuminant’s direction using local regions

rather than the entire image.

As has been noted in section 7.3, the presence of strong edges can bias

the structure tensor and therefore these regions should be excluded while
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computing the expectations. Similarly, regions of constant intensity where

the signal variation is very low should also be excluded.

There exist many operators [Förstner and Gülch, 1987,Harris and Stephens,

1988,Lindeberg and G̊arding, 1994] to discard exactly such regions. Most of

them are based around computing the second moment matrix which is ex-

tremely similar to the structure tensor S. We use the Harris corner detector

operator [Harris and Stephens, 1988] to reject edge and constant intensity

regions which might deviate from the assumed model and therefore return

bad estimates. To determine the statistics locally, the most interesting Harris

points are computed and then the regions around those points are used to

calculate the expectations < LI2
x >, < LI2

y > and < LIxy >. Thus at each

chosen Harris point the structure tensor is computed locally to return a local

estimate of the illuminant’s direction. This can then be used to return the

probability distribution of the azimuthal angle from which the mode can be

chosen as the most likely estimate.

Preliminary experiments indicate favourable results. As discussed in sec-

tion 7.3 the azimuth can be estimated to within an accuracy of a few degrees

for most images of Plaster A in the CUReT database. This indicates that the

texture satisfies the basic model. However, for a few images the estimation

error is as high as 15◦ indicating that viewpoint and shadowing effects are

causing deviations from the model and thereby contributing incorrect mea-

surements. It is hoped that if these measurements can be excluded from the

estimation process then the azimuthal angle should be recovered more accu-

rately. This is found to be exactly the case when the top 300 Harris points

are used to choose the regions for estimating the statistics. Figure 7.10 plots

the probability distribution of the angles estimated using the Harris regions.

The mode of the distribution is at 65◦ which is within 0.15◦ of the ground
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Figure 7.10: Recovering the illuminant’s azimuth using local estimates for
an image of Plaster A from the CUReT database. The ground truth is
ψ = 65.10◦. The angle recovered using (7.14) which computes statistics over
the entire image is ψ = 49.61◦. By estimating the angle locally using Harris
regions and rejecting others it is possible to improve the accuracy of the
estimate as the mode of the distribution is 65◦.

truth. Had the entire image been used to compute the structure tensor the

recovered angle would have been ψ = 49.61◦ with an error of 15.49◦.

7.7 Conclusions

In this chapter, we have developed a theory for estimating the illuminant’s az-

imuth for isotropic, Gaussian random textures with spatially variable albedo.

Even though the theory was derived under very strong assumptions it was em-

pirically demonstrated that good results were achieved for over 5000 CUReT

images taken under various conditions which deviate from the ideal. In cer-

tain cases, the reason for the model’s insensitivity to these deviations can

be explained by incorporating non Lambertian effects into the albedo map.

Thus, the theory appears to robustly handle the effects of shadows, specu-

larities, inter-reflections, etc.

When the albedo itself is isotropic and randomly distributed log-normally,
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then the solution for the illuminant’s azimuth is identical to the one found

by Koenderink and Pont. However, the coherence of the structure tensor is

no longer a constant but varies with both the elevation and the azimuth and

is dependent on the texture’s albedo and shadowing pattern. In the case

that extra information is available in the form of a registered image with the

same elevation, then it is possible to extend the theory to arbitrarily varying

albedo as long as the surface itself is roughly isotropic Gaussian.

Being able to recover the illuminant’s azimuth raises the interesting possi-

bility of resolving parts of the Generalized Bas-Relief ambiguity (GBR) [Bel-

humeur et al., 1999,Yuille et al., 1999]. Unfortunately, it turns out that once

integrability has been enforced, the GBR does not affect the azimuthal angle

of the light source but only its elevation and strength. However, the fact

that a Gaussian distribution has been imposed on the height function does

restrict the ambiguity. If the transformed surface is given by

h̄(x, y) = λh(x, y) + µx+ νy + d (7.28)

then, in theory, both µ and ν must be zero and the ambiguity reduces to

λ which affects the variance of the Gaussian, and the constant of integra-

tion in the surface reconstruction d which affects the mean. However, in

practice, due to numerical reasons and because the Gaussian distribution is

approximated by a finite number of surface height points, it may well be the

case that the ambiguity is not resolved to just λ and d but may also involve

spurious values of µ and ν.



Chapter 8

Conclusions

We began this thesis by listing some of the applications of texture classifi-

cation followed by a literature survey. Perhaps, it is therefore appropriate

to end by looking at some of the spplications that our work has been put to

and reviewing extensions of it in the literature. Possible directions of future

research are also explored. Finally, we conclude the thesis with an attempt

at an operational definition of texture.

8.1 Applications and extensions

The single image classification framework developed in this thesis imposes

very few restrictions on the training or novel images and is therefore applica-

ble in many domains. It is also easy to implement. Consequently, researchers

have been able to transfer our algorithm to other problems and have also ex-

tended and modified our basic framework. Most of this research builds upon

the work done in chapter 3.

191
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8.1.1 Breast parenchymal density classification

Breast parenchymal density is thought to be an important indicator of the

possibility of developing breast cancer. A patient can be classified as low or

high risk depending on the presence of duct patterns in her mammogram. As

figure 8.1 shows, these patterns manifest themselves as textural regions rather

than as clearly delineated objects. Based on this observation, [Petroudi et al.,

2003] used the VZ classifier in conjunction with the MR8 filter bank to first

learn the filter response distributions for both types of patients and then

use the learnt models to predict the risk to a new patient. Some important

domain specific pre-processing steps had to be performed (such as the removal

of the pectoral muscle regions from the mammograms) but otherwise the

classification framework was left unchanged.

Figure 8.1: Mammograms can be classified as low or high risk on the basis
of their parenchymal density [Petroudi et al., 2003]. On the left are mammo-
grams of two low risk patients whose breasts are mainly composed of fatty
tissue. On the right are two high risk images with dense duct patterns.

Results were presented for a database of 132 hand labelled mammograms.

Using a very small training set, classification rates of over 90% were achieved.

This was a substantial improvement over previous work and is a hopeful indi-

cator that early breast cancer diagnosis tools might soon be fully automated

in the near future.
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8.1.2 Learning better textons

In [Georgescu et al., 2003], the authors investigate the impact of choice of

clustering method on the VZ classifier. Throughout this thesis, K-Means

clustering has been used to learn the texton dictionary. However, the method

has some potential drawbacks. In particular, the underlying density is ap-

proximated using spherical Gaussians and the number of Gaussians has to

be known in advance. Furthermore, the method is not robust as each cluster

centre can be heavily influenced by outliers. Georgescu et al. claim that al-

most all these problems are taken care of if the Mean-Shift algorithm is used

for clustering instead of K-Means.

In Mean-Shift the underlying density is estimated non-parametrically and

the number of textons in the dictionary is determined automatically by se-

lecting the modes of the distribution. Selecting the modes rather than the

means also makes the method robust to outliers. This may translate to learn-

ing better textons as compared to K-Means since the learnt textons are no

longer corrupted by noisy or outlier measurements (see figure 8.2).

(a) (b) (c)

Figure 8.2: Results from [Georgescu et al., 2003]. Image (a) shows the D040
texture from the Brodatz album. Images (b) and (c) show the pixels labelled
using the top mode and mean textons respectively. The mode textons learnt
using Mean-Shift appear to capture the local structure much better than the
mode textons learnt using K-Means.
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Results are presented on the Brodatz album using the LM, S, MR4 and

MR8 filter banks. The VZ algorithm is used and no changes are made to the

classification scheme except that textons are learnt using Mean-Shift rather

than K-Means. The results obtained are very interesting. The performance

of the Mean-Shift classifier (as compared to K-Means) was slightly worse for

the MR4 and MR8 filter banks, had no effect on S, and was slightly better

for LM. Another interesting result was that if the texton dictionary was

chosen randomly, i.e. by selecting points at random in filter response space,

then performance dropped only by 1 – 6%. These results match our finding

that the performance of the MR8 filter bank dropped by roughly 5% on the

CUReT database if the textons were chosen randomly. All these results imply

that clustering is not crucial in our framework. While improved clustering

might result in slightly better classification, the overall benefits might not be

worthwhile – particularly if they have to be obtained at the cost of discarding

information by projecting to low dimensions using filters.

One final result which must be mentioned is that the performance of the

LM filter bank is found to be superior to MR8. Unfortunately, no analysis of

this result is presented. However, it should be noted that the database used

contains absolutely no rotation. Images in the Brodatz album are taken and

subdivided into non-overlapping regions. Half the regions are retained for

training while test results are reported on the other half. As such, there are

no rotation variations, which might be the reason, apart from implementation

issues, why the LM filters perform better than the MR and S sets.

8.1.3 Improving classification via SVMs

The VZ MR8 framework was extended in [Hayman et al., 2004] by replacing

nearest neighbour classification with Support Vector Machines. The paper
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has already been mentioned in the literature survey so we just summarise

its main points now. A tree structured SVM setup was used to convert the

61 class problem for the CUReT texture to 1830 pairwise classification prob-

lems. This improved the classification performance from 97.66% to 98.46%.

However, the main attraction of SVMs are that they provide a principled

learning approach to the problem of model reduction. Hayman et al. found

that SVMs reduced the number of models needed by 10 – 20% of the original

training set. The paper also presented two other significant results about

real world material classification. It experimentally verified that pure learn-

ing techniques were incapable of successfully coping with variations caused by

scale changes or by the presence of different instances of the same material.

8.1.4 Maximum response over affine transformations

The MR filter sets introduced in chapter 3 operate by taking the maximum

response over orientation and scale. The idea was extended in [Caenen and

Van Gool, 2004] by taking the maximum response over all affine transfor-

mations of a basic filter. The maximum filter response at each pixel was

computed using gradient ascent over the parameter space of affine transfor-

mations. Note that this is different from the technique used in this thesis

of discretizing the parameter space into 6 orientations and 3 scales and then

using brute force search to determine the maximum response. The use of

steerable kernels would provide a halfway meeting point between the two

techniques.

For the classification experiments, a filter bank is chosen by generating 9

filters randomly. Each filter in the bank is chosen to have initial support 3×3

(though the final support at a given pixel can be much larger depending on

the scale selected during affine transformation estimation). The standard VZ
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framework is then used for classification except that distances are measured

using the Bhattacharya metric rather than the χ2 statistic. Results were

given for the first 27 materials present in the CUReT database. Under this

setup, it was found that the maximum response classifier had significantly

better performance than the Joint classifier (of chapter 6) using 3×3 patches.

Some supervised segmentation results are also shown when texture models

have been learnt from minimal training data and using a window classification

algorithm with no boundary adaptation (see figure 8.3).

Figure 8.3: Supervised segmentation results obtained by [Caenen and
Van Gool, 2004] using maximal filter responses. There are five classes: brick,
ivy, sky, stone and window. Three small patches of each class are chosen from
the left image for training. 20 × 20 windows in the middle image are then
classified into one of these five classes and the results shown on the right.

The idea of computing local affine invariant descriptors using maximal

filter responses provides an alternative to the framework of [Lazebnik et al.,

2003b]. One of the main advantages of filter responses is that they can be

computed at every pixel in the image. This is in contrast to the descriptors

of Lazebnik et al. which are computed at only certain interest points.

8.2 Future work

Our emphasis in this thesis has been on moving texture classification algo-

rithms out of the lab and into the real world. Developing a framework for
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classifying single, uncalibrated images has been a first step in this direction.

Another important step has been the use of compact image patches as op-

posed to filter banks with large support. However, many hurdles still need

to be overcome before a full fledged texture classifier can be successfully de-

ployed in the real world. We now discuss two of the most important issues

which need to be addressed.

8.2.1 Automatic segmentation and classification

One of the main challenges posed by real world composite images is how

to determine which regions of the image should be submitted to a texture

classification algorithm for categorization. These regions are typically pre-

segmented by hand both during training and classification. For instance,

even though the Joint classifier could correctly label nearly 98% of the pixels

in the San Francisco images, each region had to be marked by hand before

it could be classified. This reliance on human judgement to pre-segment the

regions limits the applicability of classification algorithms in the real world.

One way of overcoming this problem is to use an automatic segmenta-

tion algorithm to determine texture regions. However, even state of the art

unsupervised segmentation algorithms [Galun et al., 2003,Kadir and Brady,

2003, Malik et al., 2001, Tu and Zhu, 2002] do not generate regions good

enough for texture classification across a broad spectrum of images.

An alternative is to make use of the training data and learn a model

for simultaneously segmenting and classifying regions in composite texture

scenes. Two questions need to be resolved in order to successfully implement

such an algorithm. The first is about how to deal with background data, i.e.

data which does not fall into any of the class categories but which nevertheless

occurs frequently in the novel images. Possible solutions are to either learn an
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explicit model for the background and clutter or, in case that is not feasible,

to implicitly model these nuisance regions as anything that doesn’t fit the

class models with a given probability or threshold.

The second question is concerned with the design of the segmentation al-

gorithm. One class of segmentation algorithms start with small seed regions

which are then grown and merged to come up with a final segmentation of

the full image. An attractive way of doing this is to start by over-segmenting

the image into superpixels [Ren and Malik, 2003]. The final segmentation is

then obtained using a series of moves such as migration of superpixels from

one region to another as well as the merging and splitting of two regions. The

moves are chosen so as to optimise some cost function – generally related to

the probability of the overall segmentation as determined by the fit of the

individual regions to the models learnt during training. Note that in a su-

pervised segmentation scheme it is possible to verify that a cost function has

been chosen appropriately. In particular, the ground truth segmentations

should have the highest probability or globally optimum cost. If any other

segmentation of the image results in a higher probability then it is immedi-

ately clear that the framework in which the solution is being attempted is

incorrect.

While it is possible to get some good results using such “growth” algo-

rithms (see figure 8.4), they have a serious drawback which can lead to poor

results for many real world images. It is frequently the case that very small re-

gions do not contain enough data for representative statistics (such as texton

distributions) to be gathered and classified accurately. Hence, these regions

invariably get mapped to the wrong models. Since growth algorithms start

with lots of very small regions they often end up in a local optimum which is

of a noticeably poorer quality than the desired ground truth segmentation.
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Image Initial Seg. Final Seg. Classification

Figure 8.4: Automatic segmentation and classification results on an image
from the San Francisco database. Texture models were first learnt for all
the six classes using 5 × 5 neighbourhoods (larger neighbourhoods resulted
in boundary artifacts). Next, an initial segmentations was obtained us-
ing [Felzenszwalb and Huttenlocher, 2004]. The initial segments were then
evolved using region merge and segment transition moves. A greedy algo-
rithm was used to pick the move which resulted in the largest probability of
the subsequent segmentation as determined by the χ2 fit to the learnt mod-
els. The segmentation was stopped when no move resulted in an increased
probability. The final segmented regions were then classified. Note that in
this case good results are achieved because most of the initial segments are
fairly large themselves.

Consequently, the final classification results can also be poor.

The problem of small regions can be tackled using a segmentation al-

gorithm which splits under-segmented regions rather than merging over-

segmented ones. First, a generative model is trained to predict how many

classes are present in an under-segmented region. This is achieved by match-

ing the region’s texton distribution against linear combinations of the learnt

texture models. The coefficients of the combination which best matches the

target region determine the percentages of each class present. Given this

generative model, the automatic classification process starts by building a

hierarchical segmentation of the novel image. The top level of the segmen-

tation has the entire image as a single region while at the bottom level each

pixel is a separate region by itself. An iterative scheme is applied, where at

each iteration, a region is selected to see if it has more than one class present.

If it doesn’t, then it is retained for the final segmentation otherwise it is split
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into its two subregions. The iterations continue until a final segmentation

is arrived at where each region contains pixels from only a single class. The

final segments are then classified.

An initial implementation of this algorithm has shown promising results.

For the generative model, we chose to use the L2 norm to measure the sim-

ilarity between two distribution rather than the χ2 statistic. The L2 norm

was chosen as it leads to an analytical solution for the optimum combination

of models which best match a region’s texton distribution. To obtain a hier-

archical segmentation, the image is subdivided into progressively finer grids.

Using this setup, it was determined that for the larger regions, the generative

model was very good at correctly picking out not just which classes comprised

a region but also their relative percentages. However, the use of a grid based

segmentation meant that towards the bottom levels the regions still com-

prised more that one class but were now too small to be classified correctly.

We propose to address this problem by extending the scheme of [Felzenszwalb

and Huttenlocher, 2004] to obtain a hierarchical segmentation based on re-

gion boundaries. Going down the segmentation hierarchy would then ensure

that we do not have regions which are mixed but too small to be classified

correctly.

8.2.2 Incorporating physical information for model re-

duction

In most real world situations, only a small amount of training data is ever

available from which to learn texture models. Therefore, the problem of how

to characterise textures using only a few models is key to moving out of

the lab. It has already been determined that pure learning techniques are

incapable of dealing with the model reduction problem.
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Instead, we propose to explore solutions which incorporate physical in-

formation about textures. In particular, we propose to learn a universal

dictionary of surfons – basic, small scale surface primitives such as bumps,

ridges, grooves, etc. whose repeated placement constitutes any surface. The

goal is to model a texture by the distribution of its surfons as this is invariant

to changes in imaging conditions. Hence, a single surfon distribution learnt

for a particular texture could be adequate for coping with imaging variations.

The main challenge lies in estimating the surfon distribution from images.

If multiple, registered novel images are present with known viewpoint and

illumination then the problem is relatively easy. Either photometric stereo

techniques can be used to recover surface detail and thereby compute the

surfon distribution or the surfons can be rendered for the specific imaging

conditions to determine which surfons match which image patches in the

texture.

Some investigations into such methods have recently been carried out

by [Wang and Dana, 2004]. However, the need for registered images makes

the algorithm of Wang and Dana less, rather than more, applicable in the real

world. Therefore, an interesting area of future research would be to study

whether the problem can still be solved using unregistered novel images or,

ideally, using single images alone. Developing a theory of statistical photo-

metric stereo could lead to a possible solution. Working with unregistered

images, the goal would be recover statistical, rather than exact, descriptions

of the surface and albedo which are nevertheless sufficient for classification.

8.3 Conclusions

In this thesis, we have studied the problem of texture classification of sin-

gle images without requiring any a priori information about their imaging
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conditions. First, a basic framework was set up in which the problem of

single image classification could be attempted and we introduced low di-

mensional, rotation and scale invariant filter banks which were neverthless

capable of accurate discrimination. Then, parallels were drawn between the

psychophyscially motivated classification scheme of Leung and Malik and

the statistical approach of Konishi and Yuille and it was shown how the two

could be made equivalent. Next, we questioned the predominant use of filter

responses as texture features and offered an alternative representation based

on image patches. This was demonstrated to be superior for tasks such as

classification and synthesis. Finally, a theory for recovering the illuminant’s

azimuthal angle was developed so as to overcome the lack of prior knowledge

and aid in future classification.

It might be worthwhile to reflect on two interesting points before finishing.

First, do textons really form isolated clusters in the spirit of Leung and Malik

and Julesz’s definitions or do they just provide a way of vector quantising the

feature space? Second, are we any closer to providing a definition of texture

than we were at the start of the thesis?

There are two ways of answering the first question – and both lead to the

conclusion that texture features are not uniformly distributed throughout

the space. The most direct way of determining this is to actually look at all

possible 2D projections of image patches (or filter responses). In each case, it

was found that the distributions were not uniform. For example, the scatter

plots in figure 6.9 clearly show that the Limestone distribution forms a tight

cluster. Furthermore, if we were to inspect the PDF on top of the scatter

plot, it turns out that even the Ribbed Paper distribution forms tight clus-

ters. Another way of determining that the texton representation adequately

captures the true texture distribution is by inspecting the synthesis and clas-
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sification results. As figure 6.5 illustrates, a few hundred textons can be used

to synthesise high quality textures which are perceptually indistinguishable

from the originals. Therefore, it must be the case that the true PDF is not

distributed throughout the space as otherwise important information would

be lost and the synthesis would be poor. This view is backed up by the clas-

sification results of subsection 5.3.1 where it was determined that quantising

the PDF into uniformly spaced bins did not improve classification and where

most of the bins turned out to be empty.

To answer the second question, we focus on an operational definition

of texture from the perspective of classification and synthesis rather than

attempt a definition which might be universal but non-functional. In the

recent past, textures have come to be characterised by the distribution of

filter responses gathered across the entire image. Since most filter designs

were biologically motivated, a texture was effectively defined by its global

distribution of edges, bars, spots and rings. While this is a valid definition

and has worked well for a long time, this thesis has demonstrated that it is

not the best possible one. Instead, we prefer to revive the older definitions

of texture based on image patches.

We define the texture of an image patch as the co-occurrence of pixel

intensities in that patch. Note that the emphasis has shifted from texture

being a global statistical property of the image to it being a local property

of every image patch (though global context is still very important while

measuring the similarity between two patches). Thus, even a uniform planar

patch with no albedo markings has some texture.

It is possible to draw an analogy between pixel intensities and texture

patches using this definition. The intensity at a particular pixel becomes a

limiting case of its texture as its neighbourhood is made vanishingly small.
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Thus, operators on pixel intensities can have analogous counterparts for tex-

ture patches. For instance, using the given definition, texture gradients can

be computed just as intensity gradients. Similarly, the degree of texture

homogeneity can be measured analogously to intensity homogeneity. Most

importantly, the two questions “What is the global texture / colour of this

image?” have the same general answer. For certain applications, such as

content based image retrieval and classification, a valid response might be

the colour distribution or the patch distribution. However, in a more general

context both questions may well be nonsensical.

It should be noted that the relationship between texture and intensity

cannot be taken too far. In particular, similar image patches do not need to

have similar central pixel intensities and similar central pixel intensities do

not imply similar texture patches.

While a local patch based definition has proved to be very useful for

both classification and synthesis, we have so far brushed under the carpet

the crucial question of how to determine the size and shape of a patch for

either application. The algorithm of [Zalesny and Van Gool, 2000] presents

one way of learning the neighbourhood structure using the synthesis-via-

analysis route. However, they assume that textures are stationary (i.e. the

same structure is applicable at every pixel in the image). Clearly, the shape

and size of the neighbourhood structure must vary with the local geometry

and photometry of the texture. As such, affine region adaptation methods

such as [Caenen and Van Gool, 2004, Lazebnik et al., 2003b, Ravela, 2004]

might provide a better way of determining the shape and scale of patches at

different locations in an image.

In conclusion, we put in perspective our efforts at defining texture with

a quote from Mark Twain – “The researches of many commentators have
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already thrown much darkness on this subject, and it is probable that, if

they continue, we shall soon know nothing at all about it”.
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Appendix A

Relating χ2 to the Capacitory

Discriminant & KL Divergence

The capacitory discriminant [Topsoe, 2000] between two discrete probability

distributions p and q is defined as

C(p, q) =
∑

k

pk log

(

2pk
pk + qk

)

+ qk log

(

2qk
pk + qk

)

(A.1)

= D
(

p‖1

2
(p+ q)

)

+D
(

q‖1

2
(p+ q)

)

(A.2)

= D(p‖q)− 2D
(

1

2
(p+ q)‖q

)

(A.3)

where D =
∑

pk log(pk/qk) is the KL divergence. The capacitory discrimi-

nant is sometimes also referred to [Rubner et al., 2000] as Jeffreys’ divergence

(even though C differs slightly from the original definition [Kullback, 1968])

and is generally preferred to the KL divergence as it is symmetric, more

robust and
√

C(p, q) is a metric [Endres and Schindelin, 2003].
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To show that limp→q C = 1

2
χ2 we rewrite C as

C(p, q) =
∑

k

pk log

(

1 +
pk − qk
pk + qk

)

+ qk log

(

1− pk − qk
pk + qk

)

(A.4)

and take the Taylor series expansion log(1 + x) = x− 1

2
x2 +O(x3) to get

C(p, q) =
∑

k

(pk − qk)
pk − qk
pk + qk

− 1

2
(pk + qk)

(

pk − qk
pk + qk

)2

+ ε

= 1

2

∑

k

(pk − qk)2

pk + qk
+ ε (A.5)

= 1

2
χ2(p, q) + ε (A.6)

⇒ lim
p→q

C(p, q) = 1

2
χ2(p, q) (A.7)

Thus, the χ2 statistic is a limiting case of the capacitory discriminant and

the two should give the same results when the distributions being compared

are similar. Furthermore, since ε ≥ 0 we must have 1

2
χ2(p, q) ≤ C(p, q). In

fact, Topsoe has shown

1

2
χ2(p, q) ≤ C(p, q) ≤ ln 2 · χ2(p, q) (A.8)

which provides very tight bounds on C in terms of the χ2 statistic.

A somewhat analogous result can also be shown for the KL divergence. By

noting that D ≥ 0 and combining (A.3) and (A.6) we get 1

2
χ2(p, q) ≤ D(p‖q).

Thus χ2 also provides a lower bound for the KL divergence. The upper

bound for D can be derived in terms of the asymmetric chi-squared statistic



209

χ2
a(p, q) =

∑

k(pk − qk)2/qk by noting that

D(p‖q) =
∑

k

pk log

(

pk
qk

)

=
∑

k

pk log

(

1 +
pk − qk
qk

)

(A.9)

=
∑

k

pk
pk − qk
qk

− ε+
∑

k

qk −
∑

k

pk (A.10)

=
∑

k

(pk − qk)2

qk
− ε (A.11)

⇒ lim
p→q

D(p‖q) = χ2

a(p, q) (A.12)

where we have used the truncated Taylor series log(1 + x) = x−O(x2) and

the fact that
∑

qk − pk = 0. Noting that ε ≥ 0 in (A.11) gives

1

2
χ2(p, q) ≤ D(p‖q) ≤ χ2

a(p, q) (A.13)

which are the required bounds on the KL divergence in terms of the chi-

squared statistics.
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